Bryophytes produce rare and bioactive compounds with a broad range of therapeutic potential, and many species are reported in ethnomedicinal uses. However, only a few studies have investigated their potential as natural anti-inflammatory drug candidate compounds. The present study investigates the anti-inflammatory effects of thirty-two species of bryophytes, including mosses and liverworts, on Raw 264.7 murine macrophages stimulated with lipopolysaccharide (LPS) or recombinant human peroxiredoxin (hPrx1). The 70% ethanol extracts of bryophytes were screened for their potential to reduce the production of nitric oxide (NO), an important pro-inflammatory mediator. Among the analyzed extracts, two moss species significantly inhibited LPS-induced NO production without cytotoxic effects. The bioactive extracts of and inhibited NO production in a concentration-dependent manner with IC values of 1.04 and 1.54 µg/mL, respectively. The crude 70% ethanol and ethyl acetate extracts were then partitioned with different solvents in increasing order of polarity (n-hexane, diethyl ether, chloroform, ethyl acetate, and n-butanol). The fractions were screened for their inhibitory effects on NO production stimulated with LPS at 1 ng/mL or 10 ng/mL. The NO production levels were significantly affected by the fractions of decreasing polarity such as n-hexane and diethyl ether ones. Therefore, the potential of these extracts to inhibit the LPS-induced NO pathway suggests their effective properties in attenuating inflammation and could represent a perspective for the development of innovative therapeutic agents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953629PMC
http://dx.doi.org/10.3390/molecules27061940DOI Listing

Publication Analysis

Top Keywords

murine macrophages
8
70% ethanol
8
ethyl acetate
8
polarity n-hexane
8
n-hexane diethyl
8
diethyl ether
8
extracts
6
production
5
anti-inflammatory activity
4
bryophytes
4

Similar Publications

Preparation and stability of chebulagic acid and chebulinic acid from Terminalia chebula and their biological activity.

Pak J Pharm Sci

January 2025

College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China/Province Multi-Component Chinese Medicine Engineering Technology Research Center of Liaoning, Dalian, China/Modern Traditional Chinese Medicine Research and Engineering Laboratory of Liaoning, Dalian, China.

Chebulagic acid and chebulinic acid are the two tannin compounds with the highest content in Terminalia chebula, they were separated by ODS column eluted with 20% methanol and 35% methanol, respectively. The compounds were identified by comparing the data of H NMR and C NMR with the literature; HPLC method was used to investigate the stable storage conditions of chebulagic acid and chebulinic acid; lipopolysaccharide (LPS) induced in vivo inflammation model and RAW264.7 macrophage in vitro inflammatory model to evaluate the anti-inflammatory activities of chebulagic acid and chebulinic acid.

View Article and Find Full Text PDF

Efficient Gene Delivery Admitted by small Metabolites Specifically Targeting Astrocytes in the Mouse Brain.

Mol Ther

January 2025

School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; Chinese Institute for Brain Research, Beijing 102206, China. Electronic address:

The development of efficient and targeted methods for delivering DNA in vivo has long been a major focus of research. In this study, we introduce a gene Delivery approach Admitted by small Metabolites, named gDAM, for the efficient and targeted delivery of naked DNA into astrocytes in the adult brains of mice. gDAM utilizes a straightforward combination of DNA and small metabolites, including glycine, L-proline, L-serine, L-histidine, D-alanine, Gly-Gly, and Gly-Gly-Gly, to achieve astrocyte-specific delivery of naked DNA, resulting in transient and robust gene expression in these cells.

View Article and Find Full Text PDF

Phagocytosis by macrophages decreases the radiance of bioluminescent Staphylococcus aureus.

BMC Microbiol

January 2025

Department of Biomaterials and Biomedical Technology, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, The Netherlands.

Background: In vivo evaluations of the antimicrobial efficacy of biomaterials often use bioluminescent imaging modalities based on bioluminescent bacteria to allow follow-up in single animals. Bioluminescence production by bacteria is dependent on their metabolic activity. It is well known that several factors can influence the metabolism of bacteria, such as the use of antimicrobials and changes in bacterial growth phase.

View Article and Find Full Text PDF

Pro-healing impact of liraglutide on skin wounds in normoglycemic mice.

Int Immunopharmacol

January 2025

Division of Endocrinology, Tongji Hospital, Huazhong University of Science & Technology, Wuhan, 430030, PR China; Branch of National Clinical Research Center for Metabolic Diseases, Hubei, PR China. Electronic address:

Recent studies demonstrated that glucagon-like peptide-1 receptor agonists (GLP-1RA) have promising prospects in promoting wound healing. In this study, we intend to investigate the pro-healing effect and potential molecular mechanism of topical administration of GLP-1RA liraglutide on wounds in normoglycemic mice. Two full-thickness wounds were created on the back of the C57BL/6 mice.

View Article and Find Full Text PDF

Effects of dioscin from Dioscorea nipponica on TL1A/DR3 and Th9 cells in a collagen-induced arthritis mouse model.

Int Immunopharmacol

January 2025

Department of Anatomy, Basic Medical Institute, Chengde Medical University, Chengde 067000 Hebei, China. Electronic address:

Rheumatoid arthritis (RA) is a systemic autoimmune disease, and TL1A and its receptor DR3 play important roles in its pathogenesis. Th9 cells are involved in RA development. Dioscin from Dioscorea nipponica (DDN) has a therapeutic effect on RA, but its effect on TL1A/DR3 and Th9 cells remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!