Strychnine (STN) and its major metabolite Strychnine N-Oxide (SNO) were examined electrochemically. Both parent compounds and its major metabolite showed electroactivity on glassy carbon electrodes using CV and DPV techniques. One oxidation peak at 1008 mV was observed for STN with the optimum peak intensity at pH 7. SNO produced two oxidation peaks, at 617 mV and 797 mV, at pH 5. The peaks demonstrated irreversible behaviour and the irreversibility of the system was confirmed at different scan rates. A calibration curve was produced for both CV and DPV measurements and the sensitivity of the proposed EC method was good compared with previous electrochemical and non-electrochemical methods. The precision of oxidation peak of STN using the STN-MIP method produced a maximum value of 11.5% and 2.32% for inter-day and intraday %RSD, respectively. The average% recovery was around 92%. The electrochemical method has been successfully applied to the determination of STN in spiked plasma and urine samples. For SNO, both anodic peaks of SNO demonstrated irreversible behaviour. A different sweep rate was used for calculating the number of ‘transfer electrons’ in the system; based on this, the mechanism of oxidation reaction was proposed. Calibration curves for both oxidative peaks were produced using DPV measurements. The second anodic peak demonstrated high linearity and precision with %RSD < 1.96%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954432PMC
http://dx.doi.org/10.3390/molecules27061826DOI Listing

Publication Analysis

Top Keywords

metabolite strychnine
8
strychnine n-oxide
8
major metabolite
8
oxidation peak
8
demonstrated irreversible
8
irreversible behaviour
8
produced dpv
8
dpv measurements
8
production evaluation
4
evaluation electrochemical
4

Similar Publications

This work is the first report dealing with the identification and characterisation of the secondary metabolites of the ethanolic extract of The ethanolic extract of was analysed by LCMS& Direct mass spectral analysis which is allowed to identify and Interpreted 6 & 15 compounds. The main constituents were caffeic acid, rosemary acid, Perilic acid, strychnine, hydroxy stearic acid, respectively. The extract further purified by column chromatography 15 fractions was isolated, out of which Perilic acid and strychnine are in high quantities.

View Article and Find Full Text PDF

This study aimed to assess the potential of (Asteraceae) seed -hexane, chloroform, methanol, and aqueous extracts as anticonvulsant, sedative, anticonvulsant and antiepileptic agents in Swiss albino mice. Different doses of each extract were evaluated for the anxiolytic potential using the hole-board, the elevated plus maze and the light/dark test. A phenobarbitone-induced sleep test was employed for the evaluation of sedative potential.

View Article and Find Full Text PDF

Introduction: Plants of the Strychnos genus, which include about 200 species, are used for multiple traditional purposes as hunting poison, for example, and have shown interesting pharmacological properties, especially curarizing and tetanizing, but also against malaria. Many monoterpene indole alkaloids have already been isolated and identified. Among them, there is strychnine, a famous alkaloid that can cause death by asphyxiation.

View Article and Find Full Text PDF

Strychnine (STN) and its major metabolite Strychnine N-Oxide (SNO) were examined electrochemically. Both parent compounds and its major metabolite showed electroactivity on glassy carbon electrodes using CV and DPV techniques. One oxidation peak at 1008 mV was observed for STN with the optimum peak intensity at pH 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!