Infectious diseases are a major cause of morbidity and mortality worldwide. Nutritional interventions may enhance resistance to infectious diseases or help to reduce clinical symptoms. Here, we investigated whether a whey protein concentrate (WPC) could decrease diarrheagenic -induced changes in reported stool frequency and gastrointestinal complaints in a double-blind, parallel 4-week intervention study. Subjects were randomly assigned to a whey hydrolysate placebo group, a low-dose WPC group or a high-dose WPC group. After 2 weeks of consumption, subjects ( = 121) were orally infected with a high dose of live but attenuated diarrheagenic (strain E1392/75-2A; 1E10 colony-forming units). Subjects recorded information on stool consistency and the frequency and severity of symptoms in an online diary. The primary outcome parameters were a change in stool frequency (stools per day) and a change in Gastrointestinal Symptom Rating Scale (GSRS) diarrhea score between the first and second days after infection. Neither dose of the whey protein concentrate in the dietary treatment affected the -induced increase in stool frequency or GSRS diarrhea score compared to placebo treatment. The composition of the microbiota shifted between the start of the study and after two weeks of consumption of the products, but no differences between the intervention groups were observed, possibly due to dietary guidelines that subjects had to adhere to during the study. In conclusion, consumption of the whey protein concentrate by healthy adults did not reduce diarrhea scores in an infection model compared to a whey hydrolysate placebo control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948686PMC
http://dx.doi.org/10.3390/nu14061204DOI Listing

Publication Analysis

Top Keywords

whey protein
16
protein concentrate
16
stool frequency
12
intervention study
8
infection model
8
infectious diseases
8
whey hydrolysate
8
hydrolysate placebo
8
wpc group
8
weeks consumption
8

Similar Publications

Oral intake of degalactosylated whey protein increases peripheral blood telomere length in young and aged mice.

Sci Rep

December 2024

Department of Endocrinology, Metabolism, and Hypertension Research, Clinical Research Institute, NHO Kyoto Medical Center, 1-1 Mukaihata-cho, Fukakusa, Fushimi-ku, Kyoto, 612-8555, Japan.

In order to elucidate novel actions of degalactosylated whey protein (D-WP) in comparison with intact whey protein (WP), the effects of oral intake of D-WP on peripheral blood telomere length and telomerase were examined in young and aged mice. In young mice, peripheral blood telomere length was significantly elongated following oral intake of D-WP for 4 weeks. mRNA expression of both telomerase reverse transcriptase (TERT) and telomerase RNA component (TERC) was significantly increased in the peripheral blood following oral intake of D-WP for 4 weeks.

View Article and Find Full Text PDF

: To describe the effects of muscle-targeted oral nutritional supplementation (MT-ONS) on nutrition, functional capacity, and other health outcomes in patients after femur fracture surgery. : A prospective, open-label, single-centre study was conducted. Patients aged 80+ post-femur fracture were recruited.

View Article and Find Full Text PDF

Egg sausages, an essential component of traditional Chinese hot pot cuisine, have specific storage requirements and are predominantly distributed through refrigerated channels. A significant consideration in the freezing of egg sausages pertains to syneresis and textural modifications that manifest in the protein gel structure upon thawing. This research investigated the efficacy of incorporating whey protein isolate, soy protein isolate (at concentrations of 0.

View Article and Find Full Text PDF

In this research, the emulsification method was used to encapsulate in microparticles of whey protein concentrate (WPC) at different levels (1%, 2%, and 4%) and gum Arabic (GA) at three levels (0/5%, 1%, and 1/5%) and a constant level of sunflower oil (5%). The results showed that emulsions with higher quantities of wall materials exhibited better encapsulation efficiency (67%/57%) and preservation ability at different temperatures, different pH, and presence of 1% bile salt. During the storage time, the droplet size of the emulsion increased more than two times (from 2.

View Article and Find Full Text PDF

Molecular characteristics of emulsifiers such as their molecular weight (MW) and surface charge, not only affect the stability of the emulsion but also can have an impact on its capacity to either inhibit or promote microbial proliferation. These characteristics can affect the behavior of pathogens such as Typhimurium in emulsion systems. The growth and thermal resistance of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!