The prevalence of metabolic diseases is rapidly increasing and a principal contributor to this is diet, including increased consumption of energy-rich foods and foods with added phosphates. Exercise is an effective therapeutic approach to combat metabolic disease. While exercise is effective to combat the detrimental effects of a high-fat diet on metabolic health, the effects of exercise on a high-phosphate diet have not been thoroughly investigated. Here, we investigated the effects of a high-fat or high-phosphate diet in the presence or absence of voluntary exercise on metabolic function in male mice. To do this, mice were fed a low-fat, normal-phosphate diet (LFPD), a high-phosphate diet (HPD) or a high-fat diet (HFD) for 6 weeks and then subdivided into either sedentary or exercised (housed with running wheels) for an additional 8 weeks. An HFD severely impaired metabolic function in mice, increasing total fat mass and worsening whole-body glucose tolerance, while HPD did not induce any notable effects on glucose metabolism. Exercise reverted most of the detrimental metabolic adaptations induced by HFD, decreasing total fat mass and restoring whole-body glucose tolerance and insulin sensitivity. Interestingly, voluntary exercise had a similar effect on LFPD and HPD mice. These data suggest that a high-phosphate diet does not significantly impair glucose metabolism in sedentary or voluntary exercised conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951123PMC
http://dx.doi.org/10.3390/nu14061201DOI Listing

Publication Analysis

Top Keywords

high-phosphate diet
20
effects high-fat
12
glucose metabolism
12
voluntary exercise
12
diet
9
high-fat high-phosphate
8
male mice
8
exercise effective
8
high-fat diet
8
metabolic function
8

Similar Publications

Background: Chronic kidney disease (CKD) counts acute kidney injuries (AKI) as one of its many underlying causes. Lymphatic vessels are important in modulating inflammation post-injury. Manipulating lymphatic vessel expansion thus has the potential to alter CKD progression.

View Article and Find Full Text PDF

The Effect of Dietary Phosphate Load on Urinary Supersaturation and Phosphate Metabolism in Non-Stone-Forming Asian Individuals.

Ann Nutr Metab

December 2024

Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, China.

Introduction: Phosphate ion is common in the core of urinary stones and may initiate stone formation. However, the precise role of phosphate in the initiation of stone formation remains obscure. We assessed the effects of dietary phosphate load on urinary stone risk and phosphate metabolism.

View Article and Find Full Text PDF

Vascular calcification (VC) is a common complication of chronic kidney disease (CKD), for which no effective therapies are available. Hyperphosphatemia, a feature of CKD, is a well-known inducer of VC. High phosphate (HP)-induced ferroptosis plays a crucial role in CKD-related VC (CKD-VC), but the mechanisms remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Hypophosphatemic osteomalacia is a rare condition marked by low phosphate levels, which can occur due to genetic or acquired factors, and a case study discusses its management and prognosis when caused by specific antiviral drugs.
  • A 55-year-old man with chronic hepatitis B experienced symptoms like chest pain and fatigue after switching from adefovir to tenofovir, leading to the diagnosis of drug-induced hypophosphatemic osteomalacia.
  • Treatment included stopping the problematic drugs, switching to entecavir, and recommending dietary changes and supplements, which resulted in improved phosphate levels and resolution of symptoms.
View Article and Find Full Text PDF

Hyperphosphatemia Contributes to Skeletal Muscle Atrophy in Mice.

Int J Mol Sci

August 2024

Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.

Article Synopsis
  • Chronic kidney disease (CKD) leads to various health issues, including high phosphate levels (hyperphosphatemia), which can harm blood vessels and cause muscle atrophy.
  • In experiments with mice, those with CKD or high phosphate diets showed reduced muscle mass and function, confirming that hyperphosphatemia is linked to muscle damage.
  • Direct exposure to high phosphate levels in cultured muscle cells also resulted in muscle atrophy, indicating that high phosphate can independently contribute to muscle injury, particularly in the context of CKD.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!