Belt Tear Detection for Coal Mining Conveyors.

Micromachines (Basel)

Faculty of Mechanical Engineering, Opole University of Technology, 45-758 Opole, Poland.

Published: March 2022

The belt conveyor is the most commonly used conveying equipment in the coal mining industry. As the core part of the conveyor, the belt is vulnerable to various failures, such as scratches, cracks, wear and tear. Inspection and defect detection is essential for conveyor belts, both in academic research and industrial applications. In this paper, we discuss existing techniques used in industrial production and state-of-the-art theories for conveyor belt tear detection. First, the basic structure of conveyor belts is discussed and an overview of tear defect detection methods for conveyor belts is studied. Next, the causes of conveyor belt tear are classified, such as belt aging, scratches by sharp objects, abnormal load or a combination of the above reasons. Then, recent mainstream techniques and theories for conveyor belt tear detection are reviewed, and their characteristics, advantages and shortcomings are discussed. Furthermore, image dataset preparation and data imbalance problems are studied for belt defect detection. Moreover, the current challenges and opportunities for conveyor belt defect detection are discussed. Lastly, a case study was carried out to compare the detection performance of popular techniques using industrial image datasets. This paper provides professional guidelines and promising research directions for researchers and engineers based on the leading theories in machine vision and deep learning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8955949PMC
http://dx.doi.org/10.3390/mi13030449DOI Listing

Publication Analysis

Top Keywords

conveyor belt
20
belt tear
16
defect detection
16
tear detection
12
conveyor belts
12
belt
9
conveyor
9
detection
8
coal mining
8
techniques industrial
8

Similar Publications

Belt conveyor idler fault detection algorithm based on improved YOLOv5.

Sci Rep

January 2025

School of Intelligent Manufacturing and Modern Industry (School of Mechanical Engineering), Xinjiang University, Ürümqi, 830017, China.

The rapid expansion of the coal mining industry has introduced significant safety risks, particularly within the harsh environments of open-pit coal mines. The safe and stable operation of belt conveyor idlers is crucial not only for ensuring efficient coal production but also for safeguarding the lives of coal mine workers. Therefore, this paper proposes a method based on deep learning for real-time detection of conveyor idler faults.

View Article and Find Full Text PDF

Real-time detection of conveyor belt tearing is of great significance to ensure mining in the coal industry. The longitudinal tear damage problem of conveyor belts has the characteristics of multi-scale, abundant small targets, and complex interference sources. Therefore, in order to improve the performance of small-size tear damage detection algorithms under complex interference, a visual detection method YOLO-STOD based on deep learning was proposed.

View Article and Find Full Text PDF

Occupational exposures to respirable dusts and respirable crystalline silica (RCS) is well established as a health hazard in many industries including mining, construction, and oil and gas extraction. The U.S.

View Article and Find Full Text PDF

Belt conveyor idlers are freely rotating idlers supporting the belt of a conveyor, and can induce severe frictional damage to the belt as they fail. Therefore, fast and accurate detection of idler faults is crucial for the effective maintenance of belt conveyor systems. In this article, we implement and evaluate the performance of an idler stall detection system based on a multivariate deep learning model using accelerometers and microphone sensor data.

View Article and Find Full Text PDF

Similar pipeline experiment and disaster control emergency plan of updraft airflow fire in mine.

Sci Rep

December 2024

College of Safety Science and Engineering, Liaoning Technical University, 47 Zhonghua Road, Xihe District, Fuxin City, 123000, Liaoning Province, China.

Based on the engineering example of Linsheng coal mine, this paper uses TF1M3D computer simulation platform to systematically analyze the process of smoke flow spreading and air flow disorder disaster from the perspective of the whole mine network, and puts forward corresponding plans and measures. A small scale similar experiment was carried out to study the updraft flow fire in the mine. Through the analysis of the collected experimental data, the variation law of the air volume of the fire source in the main air path, side branch road and total air path with different air volume and the variation characteristics of the temperature at the monitoring point with time were obtained under different air volume conditions, and the critical air volume was fitted as 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!