Isometric Double-Layer Staggered Chain Teeth Triboelectric Nanogenerator.

Micromachines (Basel)

Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, China.

Published: March 2022

The sliding freestanding layer triboelectric nanogenerator (SF-TENG) is a sustainable power source that can convert mechanical energy from linear or rotating mechanical motion to electrical energy. This paper proposes a double-layer staggered chain teeth TENG. Comparing the staggered electrode TENG and the double-layer staggered electrode TENG, the output voltage difference is relatively small. The electrode of the TENG is designed to the shape of chain teeth, which proves that TENG can be combined with a zipper, and the best distance among chain teeth in the TENG is determined through experiments. Compared with traditional zippers, the double-layer staggered chain teeth TENG can generate electrical energy during the continuous pulling of the zipper. The double-layer staggered chain teeth TENG has good performance. When the external load is 20 MΩ, the maximum output power reaches 20.18 µW. After the rectification and transformation, the generated electricity can light up 30 LED lights or more, and can also supply power to electronic devices. Through the chain teeth array, the open circuit voltage and transfer charge generated by the zipper during the continuous pulling process are improved. The double-layer staggered chain teeth TENG has a good usage environment in life, and this work will provide valuable insights for the development of SF-TENG technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954793PMC
http://dx.doi.org/10.3390/mi13030421DOI Listing

Publication Analysis

Top Keywords

chain teeth
32
double-layer staggered
24
staggered chain
20
teeth teng
20
electrode teng
12
teng
9
chain
8
teeth
8
triboelectric nanogenerator
8
electrical energy
8

Similar Publications

The potential role of chromodomain helicase DNA-binding protein 3 in defining the cervical width by regulating the early growth stage of the apical papilla during tooth development.

J Oral Biosci

December 2024

Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho, Shiwa-gun, Iwate, 028-3694, Japan. Electronic address:

Objective: This study aimed to evaluate the role of the chromodomain helicase DNA-binding protein 3 (CHD3) in tooth morphogenesis in Chd3 knockout mice.

Methods: Chd3 knockout mice were generated using the CRISPR-Cas9 method. Mandibular first molars were extracted from the mice and their littermates and morphometrically analyzed.

View Article and Find Full Text PDF

LL-37 regulates odontogenic differentiation of dental pulp stem cells in an inflammatory microenvironment.

Stem Cell Res Ther

December 2024

Key Lab. of Oral Diseases Research, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, Anhui Province, China.

Background: Inflammation often causes irreversible damage to dental pulp tissue. Dental pulp stem cells (DPSCs), which have multidirectional differentiation ability, play critical roles in the repair and regeneration of pulp tissue. However, the presence of proinflammatory factors can affect DPSCs proliferation, differentiation, migration, and other functions.

View Article and Find Full Text PDF

Background: Periodontitis is a chronic inflammatory disease of the supporting tissue surrounding the teeth. The disease is caused by specific bacteria, such as Porphyromonas gingivalis, which lead to the destruction of periodontal ligaments and alveolar bone.

Objectives: The study aimed to evaluate the relationship between the prevalence of P.

View Article and Find Full Text PDF

The leading cause of composite restoration failure is recurrent marginal decay. The margin between the composite and tooth is initially sealed by a low-viscosity adhesive, but chemical, physical, and mechanical stresses work synergistically and simultaneously to degrade the adhesive, destroying the interfacial seal and providing an ideal environment for bacteria to proliferate. Our group has been developing self-strengthening adhesives with improved chemical and mechanical characteristics.

View Article and Find Full Text PDF

Objectives: Lactobacilli and Streptococcus mutans are stigmatized as cariogenic bacteria, but few studies have simultaneously examined the quantitative and qualitative aspects of lactobacilli and S. mutans in childhood dental caries. Therefore, this study aimed to detect the presence of S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!