Porcine cloning through somatic cell nuclear transfer (SCNT) has been widely used in biotechnology for generating animal disease models and genetically modified animals for xenotransplantation. Vitamin C is a multifunctional factor that reacts with several enzymes. In this study, we used porcine oocytes to investigate the effects of different concentrations of vitamin C on in vitro maturation (IVM), in vitro culture (IVC), and the derivation of nuclear transfer embryonic stem-like cells (NT-ESCs). We demonstrated that vitamin C promoted the cleavage and blastocyst rate of genetically modified cloned porcine embryos and improved the derivation of NT-ESCs. Vitamin C integrated into IVM and IVC enhanced cleavage and blastocyst formation (P < 0.05) in SCNT embryos. Glutathione level was increased, and reactive oxygen species levels were decreased (P < 0.05) due to vitamin C treatment. Vitamin C decreased the gene expression of apoptosis (BAX) and increased the expression of genes associated with nuclear reprogramming (NANOG, POU5F1, SOX2, c-Myc, Klf4, and TEAD4), antioxidation (SOD1), anti-apoptotic (Bcl2), and trophectoderm (CDX2). Moreover, vitamin C improved the attachment, derivation, and passaging of NT-ESCs, while the control group showed no outgrowths beyond the primary culture. In conclusion, supplementation of vitamin C at a dose of 50 µg/ml to the IVM and IVC culture media was appropriate to improve the outcomes of porcine IVM and IVC and for the derivation of NT-ESCs as a model to study the pre- and post-implantation embryonic development in cloned transgenic embryos. Therefore, we recommend the inclusion of vitamin C as a supplementary factor to IVM and IVC to improve porcine in vitro embryonic development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.repbio.2022.100632 | DOI Listing |
Poult Sci
November 2024
Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China. Electronic address:
Spermatogonial stem cells (SSCs) have vast application prospects in livestock and poultry production, genetic engineering, and medical research. However, the scarcity of SSCs and the complexity of their development limit the elucidation and verification of the mechanism of SSCs in vitro. Although miRNAs have been identified as critical players in germ cell development, upstream regulatory mechanisms by which miRNAs regulate SSCs formation are rarely reported.
View Article and Find Full Text PDFCancer Lett
January 2025
Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA. Electronic address:
Advanced prostate cancer (PCa) remains a significant clinical challenge, and docetaxel plays a significant role in disease management. Despite the efficacy of docetaxel as a first-line chemotherapy, resistance often develops. We developed three clinically relevant in vitro PCa cell models and transcriptomic analysis identified that the Paf1/RNA polymerase II complex component (PAF1)-associated pluripotent-transcription factor (TF), SOX2, plays a crucial role in docetaxel resistance.
View Article and Find Full Text PDFSci Rep
October 2024
Faculty of Biotechnology, Amol University of Special Modern Technologies, P.O.Box: 46168-49767, Amol, Iran.
The transcription factors NANOG and POU5F1 (OCT4) play crucial roles in maintaining pluripotency in embryonic stem (ES) cells. While their functions have been well-studied, the specific interactions between NANOG and POU5F1 and their combined effects on pluripotency in ES-like and Epiblast cells remain less understood. Understanding these associations is vital for refining pluripotent stem cell characterization and advancing regenerative medicine.
View Article and Find Full Text PDFSci Rep
October 2024
Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
Cardiac cellular fate transition holds remarkable promise for the treatment of ischemic heart disease. We report that overexpressing two transcription factors, Sall4 and Gata4, which play distinct and overlapping roles in both pluripotent stem cell reprogramming and embryonic heart development, induces a fraction of stem-like cells in rodent cardiac fibroblasts that exhibit unlimited ex vivo expandability with clonogenicity. Transcriptomic and phenotypic analyses reveal that around 32 ± 6.
View Article and Find Full Text PDFExp Cell Res
October 2024
Department of Neurosciences, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, Italy. Electronic address:
Testicular descent is a crucial event in male sexual development, and alterations in this process during gestation can lead to reduced fertility in adulthood. Cryptorchidism, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!