GSU1771 regulates extracellular electron transfer and electroactive biofilm formation in Geobacter sulfurreducens: Genetic and electrochemical characterization.

Bioelectrochemistry

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210 Cuernavaca, Morelos, México.

Published: June 2022

Type IV pili and the >100c-type cytochromes in Geobacter sulfurreducens are essential for extracellular electron transfer (EET) towards metal oxides and electrodes. A previous report about a mutation in the gsu1771 gene indicated an enhanced reduction of insoluble Fe(III) oxides coupled with increased pilA expression. Herein, a marker-free gsu1771-deficient mutant was constructed and characterized to assess the role of this regulator in EET and the formation of electroactive biofilms. Deleting this gene delayed microbial growth in the acetate/fumarate media (electron donor and acceptor, respectively). However, this mutant reduced soluble and insoluble Fe(III) oxides more efficiently. Heme staining, western blot, and RT-qPCR analyses demonstrated that GSU1771 regulates the transcription of several genes (including pilA) and many c-type cytochromes involved in EET, suggesting the broad regulatory role of this protein. DNA-protein binding assays indicated that GSU1771 directly regulates the transcription of pilA, omcE, omcS, and omcZ. Additionally, gsu1771-deficient mutant biofilms are thicker than wild-type strains. Electrochemical studies revealed that the current produced by this biofilm was markedly higher than the wild-type strains (approximately 100-fold). Thus, demonstrating the role of GSU1771 in the EET pathway and establishing a methodology to develop highly electroactive G. sulfurreducens mutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2022.108101DOI Listing

Publication Analysis

Top Keywords

gsu1771 regulates
8
extracellular electron
8
electron transfer
8
geobacter sulfurreducens
8
insoluble feiii
8
feiii oxides
8
gsu1771-deficient mutant
8
regulates transcription
8
wild-type strains
8
gsu1771
5

Similar Publications

Influence of support materials on the electroactive behavior, structure and gene expression of wild type and GSU1771-deficient mutant of Geobacter sulfurreducens biofilms.

Environ Sci Pollut Res Int

May 2024

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210, Cuernavaca, Morelos, México.

Geobacter sulfurreducens DL1 is a metal-reducing dissimilatory bacterium frequently used to produce electricity in bioelectrochemical systems (BES). The biofilm formed on electrodes is one of the most important factors for efficient electron transfer; this is possible due to the production of type IV pili and c-type cytochromes that allow it to carry out extracellular electron transfer (EET) to final acceptors. In this study, we analyzed the biofilm formed on different support materials (glass, hematite (FeO) on glass, fluorine-doped tin oxide (FTO) semiconductor glass, FeO on FTO, graphite, and stainless steel) by G.

View Article and Find Full Text PDF

Global transcriptional analysis of Geobacter sulfurreducens gsu1771 mutant biofilm grown on two different support structures.

PLoS One

October 2023

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.

Electroactive biofilms formation by the metal-reducing bacterium Geobacter sulfurreducens is a step crucial for bioelectricity generation and bioremediation. The transcriptional regulator GSU1771 controls the expression of essential genes involved in electron transfer and biofilm formation in G. sulfurreducens, with GSU1771-deficient producing thicker and more electroactive biofilms.

View Article and Find Full Text PDF

GSU1771 regulates extracellular electron transfer and electroactive biofilm formation in Geobacter sulfurreducens: Genetic and electrochemical characterization.

Bioelectrochemistry

June 2022

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001. Col. Chamilpa, 62210 Cuernavaca, Morelos, México.

Type IV pili and the >100c-type cytochromes in Geobacter sulfurreducens are essential for extracellular electron transfer (EET) towards metal oxides and electrodes. A previous report about a mutation in the gsu1771 gene indicated an enhanced reduction of insoluble Fe(III) oxides coupled with increased pilA expression. Herein, a marker-free gsu1771-deficient mutant was constructed and characterized to assess the role of this regulator in EET and the formation of electroactive biofilms.

View Article and Find Full Text PDF

Specialization of the Reiterated Copies of the Heterodimeric Integration Host Factor Genes in .

Front Microbiol

March 2021

Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.

Integration host factor (IHF) is a widely distributed small heterodimeric protein member of the bacterial Nucleoid-Associated Proteins (NAPs), implicated in multiple DNA regulatory processes. IHF recognizes a specific DNA sequence and induces a large bend of the nucleic acid. IHF function has been mainly linked with the regulation of RpoN-dependent promoters, where IHF commonly recognizes a DNA sequence between the enhancer-binding region and the promoter, facilitating a close contact between the upstream bound activator and the promoter bound, RNA polymerase.

View Article and Find Full Text PDF

A c-type cytochrome and a transcriptional regulator responsible for enhanced extracellular electron transfer in Geobacter sulfurreducens revealed by adaptive evolution.

Environ Microbiol

January 2011

Department of Microbiology, University of Massachusetts, Amherst, MA, USACenter for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA, USA.

The stimulation of subsurface microbial metabolism often associated with engineered bioremediation of groundwater contaminants presents subsurface microorganisms, which are adapted for slow growth and metabolism in the subsurface, with new selective pressures. In order to better understand how Geobacter species might adapt to selective pressure for faster metal reduction in the subsurface, Geobacter sulfurreducens was put under selective pressure for rapid Fe(III) oxide reduction. The genomes of two resultant strains with rates of Fe(III) oxide reduction that were 10-fold higher than those of the parent strain were resequenced.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!