Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The NADPH Oxidases (NOX) catalyze the deliberate production of reactive oxygen species (ROS) and are established regulators of redox-dependent processes across diverse biological settings. Proper management of their activity is controlled through a conserved electron transfer (ET) cascade from cytosolic NADPH substrate through the plasma membrane to extracellular O. After decades-long investigations of their biological functions, including potential as drug targets, only very recently has atomic-resolution information of NOX enzymes been made available. In this graphical review, we summarize the present structural biology understanding of the NOX enzymes afforded by X-ray crystallography and cryo-electron microscopy. Combined molecular-level insights predominantly informed by DUOX1 full-length Cryo-EM structures suggest a general structural basis for the control of their catalytic activity by intracellular domain-domain stabilization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956913 | PMC |
http://dx.doi.org/10.1016/j.redox.2022.102298 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!