Corrosion Chemistry of Electrocatalysts.

Adv Mater

School of Chemistry and Chemical Engineering, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, China.

Published: December 2022

Electrocatalysts are the core components of many sustainable energy conversion technologies that are considered the most potential solution to the worldwide energy and environmental crises. The reliability of structure and composition pledges that electrocatalysts can achieve predictable and stable performance. However, during the electrochemical reaction, electrocatalysts are influenced directly by the applied potential, the electrolyte, and the adsorption/desorption of reactive species, triggering structural and compositional corrosion, which directly affects the catalytic behaviors of electrocatalysts (performance degradation or enhancement) and invalidates the established structure-activity relationship. Therefore, it is necessary to elucidate the corrosion behavior and mechanism of electrocatalysts to formulate targeted corrosion-resistant strategies or use corrosion reconstruction synthesis techniques to guide the preparation of efficient and stable electrocatalysts. Herein, the most recent developments in electrocatalyst corrosion chemistry are outlined, including corrosion mechanisms, mitigation strategies, and corrosion syntheses/reconstructions based on typical materials and important electrocatalytic reactions. Finally, potential opportunities and challenges are also proposed to foresee the possible development in this field. It is believed that this contribution will raise more awareness regarding nanomaterial corrosion chemistry in energy technologies and beyond.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202200840DOI Listing

Publication Analysis

Top Keywords

corrosion chemistry
12
corrosion
8
strategies corrosion
8
electrocatalysts
7
chemistry electrocatalysts
4
electrocatalysts electrocatalysts
4
electrocatalysts core
4
core components
4
components sustainable
4
sustainable energy
4

Similar Publications

Lithium-sulfur (Li-S) batteries face significant challenges, such as polysulfide dissolution, sluggish reaction kinetics, and lithium anode corrosion, hindering their practical application. Herein, we report a highly effective approach using a zinc phosphide (ZnP) bifunctional catalyst to address these issues. The ZnP catalyst effectively anchors lithium polysulfides (LiPSs), catalytically reactivates them, and enhances lithium-ion diffusion.

View Article and Find Full Text PDF

The objective of the study was to synthesize tetrazole molecules featuring nitro groups positioned at the para and meta locations. We aimed to assess their effectiveness in inhibiting corrosion of mild steel in a 1 M HCl solution at 298 K. Tetrazoles with 2,5-disubstitution were created using [3 + 2] cycloaddition and N-alkylation techniques, with a particular emphasis on synthesizing molecules that contain nitro groups.

View Article and Find Full Text PDF

High-entropy alloys (HEAs), containing five or more elements in equal proportions, have recently made significant achievements in materials science due to their remarkable properties, including high toughness, excellent catalytic, thermal, and electrical conductivity, and resistance to wear and corrosion. This study focuses on a HEA composed of 23Fe-21Cr-18Ni-20Ti-18Mn, synthesized via ball milling. The alloy was treated with hydrochloric acid (HCl) to enhance its active surface area.

View Article and Find Full Text PDF

Molecular Mechanism of Unexpected Metal-Independent Hydroxyl Radical Production by Mercaptotriazole and HO.

Environ Sci Technol

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, The Chinese Academy of Sciences, Beijing 100085, P. R. China.

It is well known that hydroxyl radical (OH) can be largely produced either through the classic iron-mediated inorganic-Fenton system or our recently discovered haloquinones/HO organic-Fenton-like system, but rarely produced via thiol compounds. Here, unexpectedly, we found that OH can be unequivocally generated by incubation of HO and mercaptotriazole (MTZ), a typical heterocyclic thiol which has been used as an environmentally friendly corrosion inhibitor for mild steel. By the complementary applications of HPLC-MS and oxygen-18 isotope-labeling method, MTZ-derived sulfenic (MTZ-SOH) and sulfinic acids were detected and identified as transient intermediates, and sulfonic acid as final products.

View Article and Find Full Text PDF

Corrosion inhibitors are widely used to mitigate safety risks and economic losses in engineering, yet post-adsorption processes remain underexplored. In this study, we employed density functional theory calculations with a periodic model to investigate the dissociation mechanisms of imidazole on the Fe(100) surface. Imidazole was found to adsorb optimally in a parallel orientation, with an adsorption energy of -0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!