Background: Recent studies revealed the key role of circular RNA (circRNA) in glioma progression. However, the effect of circ_0000520, also named as circRNA ribonuclease P RNA component H1 (circ_RPPH1), in glioma development was unknown. The study aimed to reveal the role of circ_RPPH1 in glioma cell malignancy.

Methods: Human astrocytes (NHA) and glioma cell lines (A172 and U251) were employed in this study. Quantitative real-time polymerase chain reaction and western blot were used to check the expression of circ_RPPH1, microRNA-627-5p (miR-627-5p), miR-663a and syndecan 1 (SDC1). Immunohistochemistry assay was conducted to assess the protein expression of nuclear proliferation marker ki67 and matrix metalloprotein 9 (MMP9). Cell viability was assessed by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell proliferation and apoptosis were investigated by flow cytometry analysis, 5-Ethynyl-29-deoxyuridine, or cell colony formation assay. Cell migration and invasion were evaluated by transwell assays. The interaction between miRNAs (miR-627-5p and miR-663a) and circ_RPPH1 or SDC1 was identified by a dual-luciferase reporter assay. A mouse model assay was performed to reveal the impact of circ_RPPH1 knockdown on glioma cell malignancy in vivo by analyzing neoplasm volume and weight.

Results: Circ_RPPH1 and SDC1 expression were significantly increased, whereas miR-627-5p and miR-663a expression were decreased in glioma tissues and cells in comparison with healthy brain tissues or human astrocytes. Circ_RPPH1 depletion led to the decreased cell proliferation, migration and invasion, and the increased cell apoptosis. Additionally, circ_RPPH1 bound to miR-627-5p/miR-663a and mediated glioma cell processes by interacting with them. SDC1 overexpression attenuated miR-627-5p/miR-663a-mediated actions. Moreover, circ_RPPH1 regulated SDC1 expression through interaction with miR-627-5p and/or miR-663a. Furthermore, circ_RPPH1 knockdown inhibited glioma cell malignancy in vivo, accompanied by the decreases of ki67 and MMP9 expression.

Conclusion: Circ_RPPH1 knockdown inhibited glioma tumorigenesis by downregulating SDC1 by binding to miR-627-5p/miR-663a, showing that circ_RPPH1 might be an effective therapeutic target for glioma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11011-022-00965-yDOI Listing

Publication Analysis

Top Keywords

glioma cell
24
circ_rpph1
13
cell
12
cell malignancy
12
sdc1 expression
12
mir-627-5p mir-663a
12
circ_rpph1 knockdown
12
glioma
11
binding mir-627-5p/mir-663a
8
circ_rpph1 glioma
8

Similar Publications

CYP3A5 promotes glioblastoma stemness and chemoresistance through fine-tuning NAD/NADH ratio.

J Exp Clin Cancer Res

January 2025

School of Medicine, Chinese PLA General Hospital, Nankai University, Beijing, China.

Background: Glioblastoma multiforme (GBM) exhibits a cellular hierarchy with a subpopulation of stem-like cells known as glioblastoma stem cells (GSCs) that drive tumor growth and contribute to treatment resistance. NAD(H) emerges as a crucial factor influencing GSC maintenance through its involvement in diverse biological processes, including mitochondrial fitness and DNA damage repair. However, how GSCs leverage metabolic adaptation to obtain survival advantage remains elusive.

View Article and Find Full Text PDF

In recent years, it has been increasingly recognized that tumor growth relies not only on support from the surrounding microenvironment but also on the tumors capacity to adapt to - and actively manipulate - its niche. While targeting angiogenesis and modulating the local immune environment have been explored as therapeutic approaches, these strategies have yet to yield effective treatments for brain tumors and remain under refinement. More recently, the nervous system itself has been explored as a critical environmental support for cancer, with extensive neuro-tumoral interactions observed both intracranially and in extracranial sites containing neural components.

View Article and Find Full Text PDF

Shh Protects the Injured Spinal Cord in Mice by Promoting the Proliferation and Inhibiting the Apoptosis of Nerve Cells via the Gli1-TGF-β1/ERK Axis.

Cell Biochem Funct

January 2025

Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.

Spinal cord injury (SCI) is a common neurological trauma that cannot be completely cured with surgical techniques and medications. In this study, we established a mouse SCI model and used an adeno-associated virus (AAV) to achieve the high expression of sonic hedgehog (Shh) at the injury site to further investigate the therapeutic effect and mechanism of Shh on SCI. The results of the present study show that Shh may promote motor function recovery.

View Article and Find Full Text PDF

Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!