Purpose: Hypophysitis is a heterogeneous condition that includes inflammation of the pituitary gland and infundibulum, and it can cause symptoms related to mass effects and hormonal deficiencies. We aimed to evaluate the potential role of machine learning methods in differentiating hypophysitis from non-functioning pituitary adenomas.

Methods: The radiomic parameters obtained from T1A-C images were used. Among the radiomic parameters, parameters capable of distinguishing between hypophysitis and non-functioning pituitary adenomas were selected. In order to avoid the effects of confounding factors and to improve the performance of the classifiers, parameters with high correlation with each other were eliminated. Machine learning algorithms were performed with the combination of gray-level run-length matrix-low gray level run emphasis, gray-level co-occurrence matrix-correlation, and gray-level co-occurrence entropy.

Results: A total of 34 patients were included, 17 of whom had hypophysitis and 17 had non-functioning pituitary adenomas. Among the 38 radiomics parameters obtained from post-contrast T1-weighted images, 10 tissue features that could differentiate the lesions were selected. Machine learning algorithms were performed using three selected parameters; gray level run length matrix-low gray level run emphasis, gray-level co-occurrence matrix-correlation, and gray level co-occurrence entropy. Error matrices were calculated by using the machine learning algorithm and it was seen that support vector machines showed the best performance in distinguishing the two lesion types.

Conclusions: Our analysis reported that support vector machines showed the best performance in distinguishing hypophysitis from non-functioning pituitary adenomas, emphasizing the importance of machine learning in differentiating the two lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11102-022-01213-3DOI Listing

Publication Analysis

Top Keywords

machine learning
24
non-functioning pituitary
20
pituitary adenomas
16
hypophysitis non-functioning
16
gray level
16
gray-level co-occurrence
12
learning methods
8
radiomic parameters
8
distinguishing hypophysitis
8
learning algorithms
8

Similar Publications

Background: Type 2 diabetes (T2D) is a leading cause of premature morbidity and mortality globally and affects more than 100 million people in the world's most populous country, India. Nutrition is a critical and evidence-based component of effective blood glucose control and most dietary advice emphasizes carbohydrate and calorie reduction. Emerging global evidence demonstrates marked interindividual differences in postprandial glucose response (PPGR) although no such data exists in India and previous studies have primarily evaluated PPGR variation in individuals without diabetes.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop and validate a deep-learning model for noninvasive anemia detection, hemoglobin (Hb) level estimation, and identification of anemia-related retinal features using fundus images.

Methods: The dataset included 2265 participants aged 40 years and above from a population-based study in South India. The dataset included ocular and systemic clinical parameters, dilated retinal fundus images, and hematological data such as complete blood counts and Hb concentration levels.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to develop a deep learning approach that restores artifact-laden optical coherence tomography (OCT) scans and predicts functional loss on the 24-2 Humphrey Visual Field (HVF) test.

Methods: This cross-sectional, retrospective study used 1674 visual field (VF)-OCT pairs from 951 eyes for training and 429 pairs from 345 eyes for testing. Peripapillary retinal nerve fiber layer (RNFL) thickness map artifacts were corrected using a generative diffusion model.

View Article and Find Full Text PDF

Importance: Associations between child maltreatment (CM) and health have been studied broadly, but most studies focus on multiplicity (number of experienced subtypes of CM). Studies assessing multiple CM characteristics are scarce, partly due to methodological challenges, and were mostly conducted in patient samples.

Objective: To determine the importance of CM characteristics in association with physical multimorbidity in adulthood for women and men in a German representative sample.

View Article and Find Full Text PDF

Looking at the world often involves not just seeing things, but feeling things. Modern feedforward machine vision systems that learn to perceive the world in the absence of active physiology, deliberative thought, or any form of feedback that resembles human affective experience offer tools to demystify the relationship between seeing and feeling, and to assess how much of visually evoked affective experiences may be a straightforward function of representation learning over natural image statistics. In this work, we deploy a diverse sample of 180 state-of-the-art deep neural network models trained only on canonical computer vision tasks to predict human ratings of arousal, valence, and beauty for images from multiple categories (objects, faces, landscapes, art) across two datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!