The design of power supply systems for wearable applications requires both flexibility and durability. Thermoelectrochemical cells (TECs) with large Seebeck coefficient can efficiently convert low-grade heat into electricity, thus having attracted considerable attention in recent years. Utilizing hydrogel electrolyte essentially addresses the electrolyte leakage and complicated packaging issues existing in conventional liquid-based TECs, which well satisfies the need for flexibility. Whereas, the concern of mechanical robustness to ensure stable energy output remains yet to be addressed. Herein, a flexible quasi-solid-state TEC is proposed based on the rational design of a hydrogel electrolyte, of which the thermogalvanic effect and mechanical robustness are simultaneously regulated via the multivalent ions of a redox couple. The introduced redox ions not only endow the hydrogel with excellent heat-to-electricity conversion capability, but also act as ionic crosslinks to afford a dual-crosslinked structure, resulting in reversible bonds for effective energy dissipation. The optimized TEC exhibits a high Seebeck coefficient of 1.43 mV K and a significantly improved fracture toughness of 3555 J m, thereby can maintain a stable thermoelectrochemical performance against various harsh mechanical stimuli. This study reveals the high potential of the quasi-solid-state TEC as a flexible and durable energy supply system for wearable applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8956784PMC
http://dx.doi.org/10.1007/s40820-022-00824-6DOI Listing

Publication Analysis

Top Keywords

mechanical robustness
12
thermogalvanic mechanical
8
redox ions
8
flexible quasi-solid-state
8
wearable applications
8
seebeck coefficient
8
hydrogel electrolyte
8
quasi-solid-state tec
8
regulating thermogalvanic
4
mechanical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!