Along with the wide applications of conventional plastics, they have a large number of disadvantages like their non-biodegradable nature, dependency on fossil fuels and the release of large amounts of toxic materials in the environment. Therefore, to resolve these problems, a number of bioplastics are studied, out of which polyhydroxyalkanoates are considered as the best alternatives. Polyhydroxyalkanoates (PHAs) are produced by microorganisms as intracellular granules during stressful conditions. Though a wide range of organisms can naturally produce PHAs, only a few of them can be used for commercial production. Therefore, more diverse organisms that accumulate a considerable amount of PHAs and also reduce the production cost need to be exploited. Transgenic plants, recombinant bacteria, algae and extremophiles are some diverse organisms that produce a high amount of PHAs at a low cost. So, if potential organisms are used for PHA production, bioplastics will be able to completely replace petroleum-based polymers. Therefore, our review mainly focuses on production of PHAs using potential organisms so that amount of PHAs produced is high and cost-effective which would further help in the commercialization of PHAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00248-022-01995-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!