Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Percutaneous coronary intervention (PCI) has increasingly become the main treatment for coronary artery disease. The procedure requires high experienced skills and dexterous manipulations. However, there are few techniques to model PCI skill so far. In this study, a learning framework with local and ensemble learning is proposed to learn skill characteristics of different skill-level subjects from their PCI manipulations. Ten interventional cardiologists (four experts and six novices) were recruited to deliver a medical guidewire to two target arteries on a porcine model for in vivo studies. Simultaneously, translation and twist manipulations of thumb, forefinger, and wrist are acquired with electromagnetic (EM) and fiber-optic bend (FOB) sensors, respectively. These behavior data are then processed with wavelet packet decomposition (WPD) under 1-10 levels for feature extraction. The feature vectors are further fed into three candidate individual classifiers in the local learning layer. Furthermore, the local learning results from different manipulation behaviors are fused in the ensemble learning layer with three rule-based ensemble learning algorithms. In subject-dependent skill characteristics learning, the ensemble learning can achieve 100% accuracy, significantly outperforming the best local result (90%). Furthermore, ensemble learning can also maintain 73% accuracy in subject-independent schemes. These promising results demonstrate the great potential of the proposed method to facilitate skill learning in surgical robotics and skill assessment in clinical practice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2022.3160159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!