A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Learning Skill Characteristics From Manipulations. | LitMetric

AI Article Synopsis

  • PCI is becoming the main treatment for coronary artery disease, but there are limited techniques to model the skills required for the procedure.
  • The study develops a learning framework that analyzes the manipulations of both expert and novice interventional cardiologists using advanced sensors to capture their movements.
  • Results show that using ensemble learning to combine data from different skills led to a 100% accuracy in skill assessment, indicating its strong potential for improving surgical training and evaluation in clinical settings.

Article Abstract

Percutaneous coronary intervention (PCI) has increasingly become the main treatment for coronary artery disease. The procedure requires high experienced skills and dexterous manipulations. However, there are few techniques to model PCI skill so far. In this study, a learning framework with local and ensemble learning is proposed to learn skill characteristics of different skill-level subjects from their PCI manipulations. Ten interventional cardiologists (four experts and six novices) were recruited to deliver a medical guidewire to two target arteries on a porcine model for in vivo studies. Simultaneously, translation and twist manipulations of thumb, forefinger, and wrist are acquired with electromagnetic (EM) and fiber-optic bend (FOB) sensors, respectively. These behavior data are then processed with wavelet packet decomposition (WPD) under 1-10 levels for feature extraction. The feature vectors are further fed into three candidate individual classifiers in the local learning layer. Furthermore, the local learning results from different manipulation behaviors are fused in the ensemble learning layer with three rule-based ensemble learning algorithms. In subject-dependent skill characteristics learning, the ensemble learning can achieve 100% accuracy, significantly outperforming the best local result (90%). Furthermore, ensemble learning can also maintain 73% accuracy in subject-independent schemes. These promising results demonstrate the great potential of the proposed method to facilitate skill learning in surgical robotics and skill assessment in clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2022.3160159DOI Listing

Publication Analysis

Top Keywords

ensemble learning
20
skill characteristics
12
learning
11
local learning
8
learning layer
8
skill
5
ensemble
5
learning skill
4
manipulations
4
characteristics manipulations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!