Droplet manipulation is crucial for diverse applications ranging from bioassay to medical diagnosis. Current magnetic-field-driven manipulation strategies are mainly based on fixed or partially tunable structures, which limits their flexibility and versatility. Here, a reconfigurable magnetic liquid metal robot (MLMR) is proposed to address these challenges. Diverse droplet manipulation behaviors including steady transport, oscillatory transport, and release can be achieved by the MLMR, and their underlying physical mechanisms are revealed. Moreover, benefiting from the magnetic-field-induced active deformability and temperature-induced phase transition characteristics, its droplet-loading capacity and shape-locking/unlocking switching can be flexibly adjusted. Because of the fluidity-based adaptive deformability, MLMR can manipulate droplets in challenging confined environments. Significantly, MLMR can accomplish cooperative manipulation of multiple droplets efficiently through on-demand self-splitting and merging. The high-performance droplet manipulation using the reconfigurable and multifunctional MLMR unfolds new potential in microfluidics, biochemistry, and other interdisciplinary fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.2c00100 | DOI Listing |
Cell Death Discov
January 2025
Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China.
Emerging evidence shows that lipid metabolic reprogramming plays a vital role in tumor metastasis. The effect and mechanism of fatty acids and lipid droplets (LDs), the core products of lipid metabolism, on the metastasis of oral squamous cell carcinoma (OSCC), need further exploration. In this study, the influence of palmitic acid (PA) and oleic acid (OA) on the migration and invasion ability of OSCC cells was determined by in vitro experiments.
View Article and Find Full Text PDFInnovation (Camb)
January 2025
Center for Intelligent Biomedical Materials and Devices (IBMD), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen 518055, China.
Optical tweezers and related techniques offer extraordinary opportunities for research and applications in physical, biological, and medical fields. However, certain critical requirements, such as high-intensity laser beams, sophisticated electrode designs, additional electric sources, or low-conductive media, significantly impede their flexibility and adaptability, thus hindering their practical applications. Here, we report innovative photopyroelectric tweezers (PPT) that combine the advantages of light and electric field by utilizing a rationally designed photopyroelectric substrate with efficient and durable photo-induced surface charge-generation capability, enabling diverse manipulation in various working scenarios.
View Article and Find Full Text PDFACS Nano
January 2025
Leibniz Institute of Polymer Research, Dresden 01069, Germany.
Droplet evaporation on solid substrates is a ubiquitous phenomenon and is relevant in many natural and industrial processes. Whereas it has been reported that the evaporation process is sped up on soft substrates compared with that on hard substrates, no attempt has been made in exploring how substrate stretching affects droplet evaporation and evaporative deposition patterns. Here, we systematically investigate the contact line dynamics of droplets evaporating on substrates with different stiffnesses and stretching ratios and the structures of the evaporative deposition patterns of nanoparticles.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA.
Developing of molecular crystalline materials with light-induced multiple dynamic deformation in space dimension and photochromism on time scales has attracted much attention for its potential applications in actuators, sensoring and information storage. Nevertheless, organic crystals capable of both photoinduced dynamic effects and static color change are rare, particularly for multi-component cocrystals system. In this study, we first report the construction of charge transfer co-crystals allows their light-induced solid-to-liquid transition and photochromic behaviors to be controlled by trans-stilbene (TSB) as an electron donor and 3,4,5,6-Tetrafluorophthalonitrile (TFP) as an electron acceptor.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, 518000, Shenzhen, China.
Advancements in screening technologies employing small organisms have enabled deep profiling of compounds in vivo. However, current strategies for phenotyping of behaving animals, such as zebrafish, typically involve tedious manipulations. Here, we develop and validate a fully automated in vivo screening system (AISS) that integrates microfluidic technology and computer-vision-based control methods to enable rapid evaluation of biological responses of non-anesthetized zebrafish to molecular gradients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!