The development of a highly sensitive all-fiber temperature sensor based on a Sagnac interferometer configuration is demonstrated here. We use 10 m of an erbium-doped fiber (EDF) as a passive sensing element inside the Sagnac loop, taking advantage of the extra birefringence added by the presence of the doping elements. Using a standard interrogation method of simply tracing a interference peak, we were able to detect temperature variations with a sensitivity of up to 0.2 nm/°C and high linearity. The results demonstrate, for the first time, that the usage of an EDF as a totally passive element can be an interesting option to extend the range of parameter possibilities achievable for highly sensitive temperature sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.448377 | DOI Listing |
An ultrasensitive refractive index (RI) sensing technology based on an enhanced Vernier effect is proposed, which integrates a polymer Fabry-Perot interferometer (FPI) with an open cavity FPI on the tip of a seven-core optical fiber. Interference spectra of the polymer FPI and the open cavity FPI shift to opposite directions as the ambient RI changes, thus leading to the enhanced Vernier effect. Investigations of RI sensitivity and temperature dependence of the proposed fiber sensors are carried out.
View Article and Find Full Text PDFA novel, to the best of our knowledge, optical fiber whispering-gallery mode (WGM) sensor for simultaneously measuring humidity and temperature is proposed and investigated. The proposed sensor is realized by a polyvinyl alcohol (PVA)-coated capillary tube coupling with an optical single-mode fiber (SMF), which is integrated with a fiber Bragg grating (FBG). The as-fabricated sensor can be used not only for relative humidity (RH) sensing but also for temperature detection.
View Article and Find Full Text PDFWearable sensors with multiple functions are attracting significant attention due to their broad applications in health monitoring and human-computer interaction. Despite significant progress in wearable sensors, it is a significant challenge to monitor temperature and stress simultaneously with a single sensor. A wearable multifunctional optical sensor based on Er/Yb co-doped GdO nanoparticles and a tapered U-shaped fiber is proposed to monitor both temperature and stress in this paper.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, China. Electronic address:
Conductive hydrogels with exceptional mechanical properties have received extensive attention in flexible strain sensors. However, there is still a huge challenge in the preparation of hydrogels with high toughness, conductivity and frost resistance performance. In this study, the prepared PA-PAAM-CS (PPAC) composite hydrogels were obtained by incorporating phytic acid (PA) and chitosan (CS) into poly(acrylamide-co-stearyl methacrylate) (PAAM) polymer network.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.
A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!