[Succinate dehydrogenase in cancer].

Med Sci (Paris)

Université de Paris, PARCC, Inserm UMR970, Équipe labellisée par la Ligue contre le cancer, Paris, France.

Published: March 2022

Succinate dehydrogenase (SDH) is a mitochondrial enzyme that participates in both the tricarboxylic acid cycle and the electron transport chain. Mutations in genes encoding SDH are responsible for a predisposition to pheochromocytomas and paragangliomas, and more rarely, to gastrointestinal stromal tumors or renal cell carcinomas. A decrease in SDH activity, not explained by genetics, has also been observed in more common cancers. One of the consequences of the inactivation of SDH is the excessive production of its substrate, succinate, which acts as an oncometabolite by promoting a pseudohypoxic status and an extensive epigenetic rearrangement. Understanding SDH-related oncogenesis now makes it possible to develop innovative diagnostic methods and to consider targeted therapies for the management of affected patients.

Download full-text PDF

Source
http://dx.doi.org/10.1051/medsci/2022024DOI Listing

Publication Analysis

Top Keywords

[succinate dehydrogenase
4
dehydrogenase cancer]
4
cancer] succinate
4
succinate dehydrogenase
4
sdh
4
dehydrogenase sdh
4
sdh mitochondrial
4
mitochondrial enzyme
4
enzyme participates
4
participates tricarboxylic
4

Similar Publications

Protein S-palmitoylation is the process by which a palmitoyl fatty acid is attached to a cysteine residue of a protein via a thioester bond. A range of methodologies are available for the detection of protein S-palmitoylation. In this study, two methods for the S-palmitoylation of different proteins were compared after metabolic labeling of cells with 15-hexadecynoic acid (15-YNE) to ascertain their relative usefulness.

View Article and Find Full Text PDF

Acute Severe Hypoxia Decreases Mitochondrial Chain Complex II Respiration in Human Peripheral Blood Mononuclear Cells.

Int J Mol Sci

January 2025

Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondria, Oxidative Stress and Muscle Plasticity", Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France.

Peripheral blood mononuclear cells' (PBMCs) mitochondrial respiration is impaired and likely involved in myocardial injury and heart failure pathophysiology, but its response to acute and severe hypoxia, often associated with such diseases, is largely unknown in humans. We therefore determined the effects of acute hypoxia on PBMC mitochondrial respiration and ROS production in healthy volunteers exposed to controlled oxygen reduction, achieving an inspired oxygen fraction of 10.5%.

View Article and Find Full Text PDF

Mitochondrial Genome Insights into Evolution and Gene Regulation in .

Int J Mol Sci

January 2025

College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China.

As a globally distributed perennial Gramineae, can adapt to harsh ecological environments and has significant economic and environmental values. Here, we performed a complete assembly and annotation of the mitogenome of using genomic data from the PacBio and BGI platforms. The mitogenome is a multibranched structure of 501,134 bp, divided into two circular chromosomes of 325,493 bp and 175,641 bp, respectively.

View Article and Find Full Text PDF

Mutations of the Electron Transport Chain Affect Lifespan and ROS Levels in .

Antioxidants (Basel)

January 2025

Department of Biological Anthropology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary.

Mutations in highly conserved genes encoding components of the electron transport chain (ETC) provide valuable insights into the mechanisms of oxidative stress and mitochondrial ROS (mtROS) in a wide range of diseases, including cancer, neurodegenerative disorders, and aging. This review explores the structure and function of the ETC in the context of its role in mtROS generation and regulation, emphasizing its dual roles in cellular damage and signaling. Using as a model organism, we discuss how ETC mutations manifest as developmental abnormalities, lifespan alterations, and changes in mtROS levels.

View Article and Find Full Text PDF

Stem-end rot caused by Neofusicoccum parvum is among the most detrimental diseases affecting postharvest mangoes. The present investigation utilized (E)-2-octenal to manage N. parvum infections, elucidating its mechanism of action.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!