Understanding complex materials at different length scales requires reliably accounting for van der Waals (vdW) interactions, which stem from long-range electronic correlations. While the important role of many-body vdW interactions has been extensively documented for the stability of materials, much less is known about the coupling between vdW interactions and atomic forces. Here we analyze the Hessian force response matrix for a single and two vdW-coupled atomic chains to show that a many-body description of vdW interactions yields atomic force response magnitudes that exceed the expected pairwise decay by 3-5 orders of magnitude for a wide range of separations between perturbed and observed atoms. Similar findings are confirmed for carbon nanotubes, graphene, and delamination of graphene from a silicon substrate previously studied experimentally. This colossal force enhancement suggests implications for phonon spectra, free energies, interfacial adhesion, and collective dynamics in materials with many interacting atoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.106101 | DOI Listing |
ACS Nano
January 2025
College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
Van der Waals (vdW) contact has been widely regarded as one of the most potential strategies for exploiting low-resistance metal-semiconductor junctions (MSJs) based on atomically thin transition-metal dichalcogenides (TMDs), but this method is still not efficient due to weak metal-TMD interfacial interactions. Therefore, an understanding of interfacial interactions between metals and TMDs is essential for achieving low-resistance contacts with weak Fermi level pinning (FLP). Herein, we report how the interfacial interactions between metals and TMDs affect the electrical contacts by considering more than 90 MSJs consisting of a semiconducting TMD channel and different types of metal electrodes, including bulk metals, MXenes, and metallic TMDs.
View Article and Find Full Text PDFNat Mater
January 2025
Department of Physics, Harvard University, Cambridge, MA, USA.
Atomically thin van der Waals (vdW) films provide a material platform for the epitaxial growth of quantum heterostructures. However, unlike the remote epitaxial growth of three-dimensional bulk crystals, the growth of two-dimensional material heterostructures across atomic layers has been limited due to the weak vdW interaction. Here we report the double-sided epitaxy of vdW layered materials through atomic membranes.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
The studies on ionic liquids (ILs) and their interaction with different solvents have always been an interesting topic for experimental and computational chemists. Recently, however, deep insights on the molecular structures of the IL-water binary mixtures have been mainly performed through classical simulations. Here, a comprehensive quantum mechanical study is presented on seven 1-butyl-3-methylimidazolium-based ILs in the absence and presence of water.
View Article and Find Full Text PDFLangmuir
January 2025
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, P. R. China.
Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Department of Physics, The M S University of Baroda, Near Railway station, Sayajigunj, Vadodara, 390002, INDIA.
Controlling vibrational modes and energy gap by creating van der Waals (vdW) heterostructures through strain engineering is a novel approach to tailor the vibrational and electronic properties of two-dimensional (2D) materials. Numerous theoretical and experimental studies have significantly contributed to analysing the properties of transition metal dichalcogenides (TMDs), known for their multifunctional applications. In this study, we investigate the strain and stacking dependent vibrational properties of WSe2/MoSe2 and MoSe2/WSe2/MoSe2 vdW heterostructures using first-principles based density functional theory calculations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!