This study sought to evaluate the physical and antimicrobial properties of a thermopolymerizable acrylic resin (PMMA) modified with metallic methacrylate monomers -zirconia (ZM), tin (TM), and di-n-butyl (DNTMB) methacrylates. Color stability was evaluated before and after immersion of samples in a staining solution by a digital spectrophotometer. The mechanical brushing test was evaluated by the roughness test. The flexural strength test used a mechanical testing machine. Human keratinocytes were used to assess cell viability and the biofilm formation assay was carried out for 5 days, in a microcosms model after one year of specimen storage. For statistical analysis, the method chosen was based on adherence to the normal distribution model and equality of variances ( < 0.05). The addition of DNTMB to PMMA promoted great antimicrobial action, acceptable cytocompatibility, without hampering the physical-mechanical properties of the commercial material. Therefore, the modified PMMA proved to be a promisor alternative to conventional resins.This study sought to evaluate the physical and antimicrobial properties of a thermopolymerizable acrylic resin (PMMA) modified with metallic methacrylate monomers -zirconia (ZM), tin (TM), and di-n-butyldimethacrylate-tin (DNTMB) methacrylates. Color stability was evaluated before and after immersion of samples in a staining solution using a digital spectrophotometer. The mechanical brushing test was evaluated by the roughness test. The flexural strength test used a mechanical testing machine. Human keratinocytes were used to assess cell viability and the biofilm formation assay was carried out for 5 days in a microcosm model after one year of specimen storage. For statistical analysis, the method chosen was based on adherence to the normal distribution model and equality of variances ( < 0.05). The addition of DNTMB to PMMA promoted great antimicrobial action, acceptable cytocompatibility, without hampering the physical-mechanical properties of the commercial material. Therefore, the modified PMMA proved to be a promising alternative to conventional denture base resins for dental use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2022.2056032 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!