A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploring the determinants of influenza A/H7N9 control intervention efficacy in China: Disentangling the effect of the '1110' policy and poultry vaccination. | LitMetric

The influenza A virus of the H7N9 subtype (FLUAV H7N9) emerged in Eastern China provinces in 2013 causing illness in both poultry and humans. Most reported FLUAV H7N9 human cases were related to those associated with the live poultry market chain. From 2013 to 2017, there were five epidemic waves of human infections, and from the end of 2016, the number of human cases increased sharply. To control FLUAV H7N9 in the market chain, the so-called '1110' policy at live poultry markets and a national vaccination programme were implemented. The relative efficacy of these two measures on the number of poultry and human infections has not been quantified and compared. To explore their efficacy, a cross-sectional study was conducted in six provinces of China, and the vaccination and surveillance data of H7N9 were analysed. Our survey data showed that poultry vendors were not widely aware of and did not accept the '1110' policy. For subjective and objective factors, some measures of the '1110' policy were not implemented in live bird markets (LBMs). However, the national vaccination programme achieved good immune effects and sharply decreased poultry FLUAV H7N9 infections. The detection rates of FLUAV H7N9 in LBMs and farms gradually decreased since the vaccination programme was implemented. Our analysis also indicated that human infections were closely related to poultry virus carriage rates; therefore, controlling FLUAV H7N9 circulation in poultry was an effective measure to control FLUAV H7N9 infections in humans. Although LBMs play a significant role in human infections, the management measures may not be implemented efficiently; hence, we need to conduct more investigations before developing related policies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tbed.14532DOI Listing

Publication Analysis

Top Keywords

fluav h7n9
28
'1110' policy
16
human infections
16
vaccination programme
12
poultry
9
h7n9
9
human cases
8
live poultry
8
market chain
8
control fluav
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!