ERK1b, a 46-kDa ERK isoform that is differentially regulated by MEK.

Cell Biol Int

Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel.

Published: July 2022

The extracellular signal-regulated kinases (ERK) 1 and 2 (ERK1/2) are members of the mitogen-activated protein kinase family. Using various stimulated rodent cells and kinase activation techniques, we identified a 46-kDa ERK. The kinetics of activation of this ERK isoform was similar to that of ERK1 and ERK2 under most but not all circumstances. We purified this isoform from rat cells followed by its cloning. The sequence of this isoform revealed that it is an alternatively spliced version of the 44-kDa ERK1 and therefore we termed it ERK1b. Interestingly, this isoform had a 26-amino acid insertion between residues 340 and 341 of ERK1, which results from Intron 7 insertion to the sequence. Examining the expression pattern, we found that ERK1b is detected mainly in rat and particularly in Ras-transformed Rat1 cells. In this cell line, ERK1b was more sensitive to extracellular stimulation than ERK1 and ERK2. Moreover, unlike ERK1 and ERK2, ERK1b had a very low binding affinity to MEK1. This low interaction led to nuclear localization of this isoform when expressed together with MEK1 under conditions in which ERK1 and ERK2 are retained in the cytoplasm. In addition, ERK1b was not coimmunoprecipitated with MEK1. We identified a new, 46-kDa ERK alternatively spliced isoform. Our results indicate that this isoform is the major one to respond to exogenous stimulation in Ras-transformed cells, probably due to its differential regulation by MAPK/ERK kinase and by phosphatases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9320930PMC
http://dx.doi.org/10.1002/cbin.11801DOI Listing

Publication Analysis

Top Keywords

erk1 erk2
16
46-kda erk
12
isoform
8
erk isoform
8
identified 46-kda
8
alternatively spliced
8
erk1b
6
erk1
6
erk
5
erk1b 46-kda
4

Similar Publications

Aims: This study aimed to delineate the effect of hyperglycemia on the Alu/LINE-1 hypomethylation and in ERK1/2 genes expression in type 2 diabetes with and without cataract.

Methods: This study included 58 diabetic patients without cataracts, 50 diabetic patients with cataracts, and 36 healthy controls. After DNA extraction and bisulfite treatment, LINE-1 and Alu methylation levels were assessed using Real-time MSP.

View Article and Find Full Text PDF

Selumetinib in adults with NF1 and inoperable plexiform neurofibroma: a phase 2 trial.

Nat Med

January 2025

Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.

The MEK inhibitor selumetinib induces objective responses and provides clinical benefit in children with neurofibromatosis type 1 (NF1) and inoperable plexiform neurofibromas (PNs). To evaluate whether similar outcomes were possible in adult patients, in whom PN growth is generally slower than in pediatric patients, we conducted an open-label phase 2 study of selumetinib in adults with NF1 PNs. The study was designed to evaluate objective response rate (primary objective), tumor volumetric responses, patient-reported outcomes and pharmacodynamic effects in PN biopsies.

View Article and Find Full Text PDF
Article Synopsis
  • Monkeypox (Mpox) is increasingly recognized as a public health issue, and this study uses multi-omics approaches to find therapeutic targets and drug repurposing opportunities to understand its molecular mechanisms.
  • Researchers created a host-pathogen interaction network and identified 55 differentially expressed genes related to Mpox, pinpointing 16 potential drug targets that include both proviral and antiviral genes involved in critical signaling pathways.
  • Promising FDA-approved drug candidates, such as kinase inhibitors and Niclosamide, were identified, aiming to enhance treatment strategies and further the understanding of Mpox's pathology.
View Article and Find Full Text PDF

Transfer RNA-derived fragment production in calves challenged with or co-infected with bovine viral diarrhea virus and in several tissues and blood.

Front Vet Sci

November 2024

Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States.

Understanding the molecular mechanisms underlying immune response can allow informed decisions in drug or vaccine development, and aid in the identification of biomarkers to predict exposure or evaluate treatment efficacy. The objective of this study was to identify differentially expressed transfer RNA-derived fragments (tRFs) in calves challenged with () or co-infected with and bovine viral diarrhea virus (BVDV). Serum, white blood cells (WBC), liver, mesenteric lymph node (MLN), tracheal-bronchial lymph node (TBLN), spleen, and thymus were collected from Control ( = 2), (MB;  = 3), and co-infected (Dual; = 3) animals, and small RNAs extracted for sequencing.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple myeloma (MM) is a type of blood cancer marked by excessive production of plasma cells that release antibodies, and current research on treatments like Raddeanin A (RA) focuses mainly on solid tumors, leaving a gap in understanding its effects on MM specifically.
  • RA, derived from Anemone raddeana regel, shows promising anti-tumor effects, and this study explores how it may inhibit MM cell growth through network pharmacology and experimental methods, revealing significant interactions with the MAPK signaling pathway.
  • Experimental results demonstrate that RA effectively slows MM cell proliferation, induces apoptosis, alters mitochondrial function, and impacts the expression of key proteins involved in cell growth and survival, suggesting a powerful potential for RA as a treatment for multiple my
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!