The behaviors of infectious bacteria are commonly studied in bulk. This is effective to define the general properties of a given isolate, but insufficient to resolve subpopulations and unique single-microbe behaviors within the bacterial pool. We here employ microscopy to study single-bacterium characteristics among Salmonella enterica serovar Typhimurium (S.Tm), as they prepare for and launch invasion of epithelial host cells. We find that during the bacterial growth cycle, S.Tm populations switch gradually from fast planktonic growth to a host cell-invasive phenotype, characterized by flagellar motility and expression of the Type-three-secretion-system-1. The indistinct nature of this shift leads to the establishment of a transient subpopulation of S.Tm "doublets"-waist-bearing bacteria anticipating cell division-which simultaneously express host cell invasion machinery. In epithelial cell culture infections, these S.Tm doublets outperform their "singlet" brethren and represent a hyperinvasive subpopulation. Atop both glass and enteroid-derived monolayers, doublets swim along markedly straighter trajectories than singlets, thereby diversifying search patterns and improving the surface exploration capacity of the total bacterial population. The straighter swimming, combined with an enhanced cell-adhesion propensity, suffices to account for the hyperinvasive doublet phenotype. This work highlights bacterial cell length heterogeneity as a key determinant of target search patterns atop epithelia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325389PMC
http://dx.doi.org/10.1111/mmi.14898DOI Listing

Publication Analysis

Top Keywords

target search
8
search patterns
8
motile doublet
4
doublet form
4
form salmonella
4
salmonella typhimurium
4
typhimurium diversifies
4
diversifies target
4
search behavior
4
behavior epithelial
4

Similar Publications

Background: Breast cancer (BC) is a global challenge that affects a large portion of individuals, especially women. It has been suggested that microparticles (MPs) can be used as a diagnostic, prognostic, or therapeutic biomarker in various diseases. Moreover, MPs are known to elevate in cancer cases.

View Article and Find Full Text PDF

The paradoxical activity of BRAF inhibitors: potential use in wound healing.

Arch Dermatol Res

January 2025

Department of Translational & Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.

The area of wound healing presents a promising field of interest for clinicians as well as the scientific community. A major concern for physicians is the rising number of elderly people suffering from diabetes, leprosy, tuberculosis and the associated chronic wounds. While traditional therapies target basic wound care, innovative strategies that accelerate wound healing are needed.

View Article and Find Full Text PDF

Context: The impacts of elevated ketone body levels on cardiac function and hemodynamics in patients with heart failure (HF) remain unclear.

Objective: The effects of ketone intervention on these parameters in patients with HF were evaluated quantitatively in this meta-analysis.

Data Sources: We searched the PubMed, Cochrane Library, and Embase databases for relevant studies published from inception to April 13, 2024.

View Article and Find Full Text PDF

A novel polysaccharide in the envelope of influences the septal secretion of preproteins with a YSIRK/GXXS motif.

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Unlabelled: Bacteria transport proteins across the plasma membrane to assemble their envelope, acquire nutrients, and establish appropriate interactions with their environment. The majority of these proteins are synthesized as precursors with a cleavable N-terminal signal sequence for recognition by the Sec machinery. In , a small subset of secreted precursors carries a YSIRK/GXXS motif.

View Article and Find Full Text PDF

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small DNA-binding protein that specifically targets AT-rich DNA sequences. Structurally, HMGA2 is an intrinsically disordered protein (IDP), comprising three positively charged 'AT-hooks' and a negatively charged C-terminus. HMGA2 can form homodimers through electrostatic interactions between its 'AT-hooks' and C-terminus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!