Background: Meteorin-like hormone (Metrnl) is a peptide secreted from the adipose tissue and modulates the whole-body energy metabolism. Metrnl release into the circulation is influenced by obesity, cold exposure, and exercise. Thyroid hormones also exert many of their effects on metabolism through uncoupling proteins (UCPs). This study aimed to determine effect of Metrnl on hypothalamo-hypophysier-thyroid axis and energy metabolism and reveal the possible involvement of UCPs in this process.

Methods And Results: Fourty male Sprague-Dawley rats were divided into 4 groups with 10 animals in each group: control, sham, 10 and 100 nM Metrnl. Hypothalamus, muscle, white adipose tissue (WAT) and brown adipose tissue (BAT) samples were collected to detect thyrotropin-releasing hormone (TRH), and UCP1 and UCP3 protein levels by western blot analysis. Serum thyroid-stimulating hormone (TSH), triiodothyronine (T3) and thyroxine (T4) hormone levels were determined by enzyme-linked immunosorbent assay. Central infusion of Metrnl caused significant increase in serum TSH, T3 and T4 levels compared to control (p < 0.05). After Metrnl treatment, there were significant increases in TRH in hypothalamus tissue, UCP1 in WAT and BAT; and UCP3 protein in the muscle tissue (p < 0.05).

Conclusions: The findings that Metrnl induced increases in the peripheral UCPs and hypothalamus-pituitary-thyroid axis hormones implicate a role for this hormone in body energy homeostasis through UCP-mediated mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-022-07374-5DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
meteorin-like hormone
8
uncoupling proteins
8
energy metabolism
8
hormone
5
metrnl
5
effects meteorin-like
4
hormone endocrine
4
endocrine function
4
function hypothalamo-hypophysial
4

Similar Publications

Aims: Diabetes mellitus (DM) induces increased inflammation of atherosclerotic plaques, resulting in elevated plaque instability. Mesenchymal stem cell (MSC) therapy was shown to decrease plaque size and increase stability in non-DM animal models. We now studied the effect of MSC therapy in a streptozotocin-induced hyperglycaemia mouse model using a clinically relevant dose of adipose tissue-derived MSCs (ASCs).

View Article and Find Full Text PDF

Hepatic lipid accumulation, or Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), is a significant risk factor for liver cancer. Despite the rising incidence of MASLD, the underlying mechanisms of steatosis and lipotoxicity remain poorly understood. Interestingly, lipid accumulation also occurs during fasting, driven by the mobilization of adipose tissue-derived fatty acids into the liver.

View Article and Find Full Text PDF

Unlabelled: Cancer cachexia, a multifactorial condition resulting in muscle and adipose tissue wasting, reduces the quality of life of many people with cancer. Despite decades of research, therapeutic options for cancer cachexia remain limited. Cachexia is highly prevalent in people with pancreatic ductal adenocarcinoma (PDAC), and many animal models of pancreatic cancer are used to understand mechanisms underlying cachexia.

View Article and Find Full Text PDF

Granular cell tumors are rare neoplasms originating from Schwann cells found in various organs. GCTs are seldom reported in the gastrointestinal tract. Pre-operative detection and diagnosis of colonic GCTs is challenging since the tumors are mainly asymptomatic, small, slow-growing, and submucosal.

View Article and Find Full Text PDF

Background: Asprosin, a novel adipokine released under fasting conditions, may play a significant role in the pathophysiology of type 2 diabetes mellitus (T2DM). The objective of this study is to investigate the effects of metformin on serum asprosin levels and FBN1 gene expression in white adipose tissue in male rats.

Methods: Thirty-two male Wistar rats were randomly and equally divided into four groups (n = 8): 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!