Understanding PEDOT doped with tosylate.

Chem Commun (Camb)

Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia.

Published: April 2022

Now in their 5th decade of research and development, conducting polymers represent an interesting class of materials to underpin new wearable or conformable electronic devices. Of particular interest over the years has been poly(3,4-ethylenedioxythiophene), commonly known as PEDOT, owing to its ease of fabrication and relative stability under typical ambient conditions. Understanding PEDOT from a variety of fundamental and applied perspectives is important for how it can be enhanced, modified, functionalised, and/or processed for use in commercial products. This feature article highlights the contribution of the research team at the University of South Australia led by Professor Evans, and their collaborators, putting their work into the broader context of conducting polymer research and application. This review focuses on the vapour synthesis of PEDOT doped with the tosylate anion, the benefits of controlling its morphology/structure during synthesis, and its application as an active material interacting with secondary anions in sensors, energy devices and drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2cc01100jDOI Listing

Publication Analysis

Top Keywords

understanding pedot
8
pedot doped
8
doped tosylate
8
tosylate 5th
4
5th decade
4
decade development
4
development conducting
4
conducting polymers
4
polymers represent
4
represent interesting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!