Autolysosomes contain components from autophagosomes and lysosomes. The contents inside the autolysosomal lumen are degraded during autophagy, while the fate of autophagosomal components on the autolysosomal membrane remains unknown. Here we report that the autophagosomal membrane components are not degraded, but recycled from autolysosomes through a process coined in this study as autophagosomal components recycling (ACR). We further identified a multiprotein complex composed of SNX4, SNX5 and SNX17 essential for ACR, which we termed 'recycler'. In this, SNX4 and SNX5 form a heterodimer that recognizes autophagosomal membrane proteins and is required for generating membrane curvature on autolysosomes, both via their BAR domains, to mediate the cargo sorting process. SNX17 interacts with both the dynein-dynactin complex and the SNX4-SNX5 dimer to facilitate the retrieval of autophagosomal membrane components. Our discovery of ACR and identification of the recycler reveal an important retrieval and recycling pathway on autolysosomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41556-022-00861-8 | DOI Listing |
Nat Commun
January 2025
School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Autophagy, a conserved catabolic process implicated in a diverse array of human diseases, requires efficient fusion between autophagosomes and lysosomes to function effectively. Recently, SNAP47 has been identified as a key component of the dual-purpose SNARE complex mediating autophagosome-lysosome fusion in both bulk and selective autophagy. However, the spatiotemporal regulatory mechanisms of this SNARE complex remain unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China. Electronic address:
The autophagosome is a double-membrane organelle that executes macroautophagy. Previous studies have shown that the autophagosome formation is driven by autophagy-related genes, among which ATG9 is the only conserved transmembrane protein and has been shown to play a critical role in the autophagosome formation. However, how ATG9 binds to the growing autophagosome membrane has remained uncertain.
View Article and Find Full Text PDFCells
December 2024
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
Macroautophagy deploys a wealth of autophagy-related proteins to synthesize the double-membrane autophagosome, in order to engulf cytosolic components for lysosome-dependent degradation. The recruitment of the ATG12~ATG5-ATG16L1 complex by WIPI family proteins is a crucial step in autophagosome formation. Nevertheless, the molecular mechanism by which WIPI3 facilitates the recruitment of the ATG12~ATG5-ATG16L1 complex remains largely unknown.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
Bitter acids (BA) are main component of Humulus lupulus L. (hops). They are known for beer brewing and have various biological and pharmacological properties, especially the bone-protective effect confirmed by our previous in vivo study.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
Canonical autophagy captures within specialized double-membrane organelles, termed autophagosomes, an array of cytoplasmic components destined for lysosomal degradation. An autophagosome is completed when the growing phagophore undergoes ESCRT-dependent membrane closure, a prerequisite for its subsequent fusion with endolysosomal organelles and degradation of the sequestered cargo. ATG9A, a key integral membrane protein of the autophagy pathway, is best known for its role in the formation and expansion of phagophores.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!