The quantification of subcortical volume development from 3D fetal ultrasound can provide important diagnostic information during pregnancy monitoring. However, manual segmentation of subcortical structures in ultrasound volumes is time-consuming and challenging due to low soft tissue contrast, speckle and shadowing artifacts. For this reason, we developed a convolutional neural network (CNN) for the automated segmentation of the choroid plexus (CP), lateral posterior ventricle horns (LPVH), cavum septum pellucidum et vergae (CSPV), and cerebellum (CB) from 3D ultrasound. As ground-truth labels are scarce and expensive to obtain, we applied few-shot learning, in which only a small number of manual annotations (n = 9) are used to train a CNN. We compared training a CNN with only a few individually annotated volumes versus many weakly labelled volumes obtained from atlas-based segmentations. This showed that segmentation performance close to intra-observer variability can be obtained with only a handful of manual annotations. Finally, the trained models were applied to a large number (n = 278) of ultrasound image volumes of a diverse, healthy population, obtaining novel US-specific growth curves of the respective structures during the second trimester of gestation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2022.119117DOI Listing

Publication Analysis

Top Keywords

manual annotations
8
ultrasound
5
subcortical segmentation
4
segmentation fetal
4
fetal brain
4
brain ultrasound
4
ultrasound deep
4
deep learning
4
learning quantification
4
quantification subcortical
4

Similar Publications

Many conditions, such as pulmonary edema, bleeding, atelectasis or collapse, lung cancer, and shadow formation after radiotherapy or surgical changes, cause Lung Opacity. An unsupervised cross-domain Lung Opacity detection method is proposed to help surgeons quickly locate Lung Opacity without additional manual annotations. This study proposes a novel method based on adversarial learning to detect Lung Opacity on chest X-rays.

View Article and Find Full Text PDF

Single-nucleus transcriptomic profiling of the diaphragm during mechanical ventilation.

Sci Rep

December 2024

Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.

Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model.

View Article and Find Full Text PDF

BMT: A Cross-Validated ThinPrep Pap Cervical Cytology Dataset for Machine Learning Model Training and Validation.

Sci Data

December 2024

Department of Pathology and Laboratory Medicine, Alpert Medical School, Brown University, Providence, RI, 02912, USA.

In the past several years, a few cervical Pap smear datasets have been published for use in clinical training. However, most publicly available datasets consist of pre-segmented single cell images, contain on-image annotations that must be manually edited out, or are prepared using the conventional Pap smear method. Multicellular liquid Pap image datasets are a more accurate reflection of current cervical screening techniques.

View Article and Find Full Text PDF

Background And Objective: Structured reports in radiology have demonstrated substantial advantages over unstructured ones. However, the transition from unstructured to structured reporting can face challenges, as experienced radiologists worry about the potential loss of valuable information. In this study, we fine-tuned the Llama 2 model capable of generating structured pituitary MRI reports from unstructured reports.

View Article and Find Full Text PDF

Photo- and video-based reidentification of green sea turtles using their natural markers is far less invasive than artificial tagging. An RGB camera mounted on a man-portable rig, was used to collect video data on Greater Talang Island (1 °54'45″N 109 °46'33″E) from September to October 2022, and September 2023. This islet is located 30 minutes offshore from the Sematan district in Southwest Sarawak, Malaysia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!