A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Driving forces of UHI changes in China's major cities from the perspective of land surface energy balance. | LitMetric

As remarkable human-induced temperature anomalies on the land surface, variations of urban heat island (UHI) and its driving factors have been investigated in numerous studies. However, few studies discussed the spatiotemporal heterogeneity of the driving forces exerted by land surface energy fluxes, i.e., net radiation, sensible heat, latent heat and heat storage, on UHI behaviors at large scale and long term. In this study, a comprehensive application of multisource datasets and statistical methods have been implemented based on land surface energy balance theory, the spatiotemporal variations of surface UHI intensity (urban-rural temperature difference) and changes of their driving forces have been quantified. The results demonstrate the dynamics of UHI intensity in 32 major cities of China from 2003 to 2017 are generally coherent with the common perception, the overall surface UHI intensity is 4.57 K higher in summer than in winter. The spatial variations of the fluxes that alter UHI intensity can be largely attributed to the varied energy interactions between vegetated/paved surface and atmosphere and the differences of background temperature and precipitation, the contribution of latent heat to UHI changes declines nearly 40% from semiarid/arid climate at the north to subtropical humid climate at the south, while the contributions of other fluxes are stable. The temporal changes of the effect of these fluxes, however, imply more complex mechanisms. The contributions of sensible heat and latent heat to UHI intensity variations are three times and eight times larger in the warm season than in the cold season respectively, indicating the influence of seasonality of background temperature, precipitation and vegetation. The low contributions of these fluxes in the cold season also suggest the significant effect of other driving forces such as anthropogenic heat, especially in semiarid/semihumid climate zones. This study highlights the temporal shifts of major driving forces of UHI intensity, the mitigation tactics for UHI in different cities and seasons should be customized for better validity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.154710DOI Listing

Publication Analysis

Top Keywords

uhi intensity
24
driving forces
20
land surface
16
surface energy
12
latent heat
12
uhi
11
forces uhi
8
uhi changes
8
major cities
8
energy balance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!