Rivers in agricultural regions serve as an important sink for livestock and poultry farm runoff, fertilizer runoff, and country living sewage, which could bring antibiotic resistance genes (ARGs) contaminations. However, the diversity and distribution of ARGs has not been well documented in the agricultural influenced river. Here, the diversity of ARGs, and their relationship with biochemical factors were determined in the surface water in an agricultural region of the Jialing River and its five rural branches. The 218 unique ARGs encoding resistance to eight major antibiotic classes have been detected using high-throughput quantitative PCR. The branches of the river had a remarkably higher abundance of ARGs than the mainstream. The aminoglycoside, beta_Lactamase, MLSB, and Multidrug resistance genes were significantly enriched in the branches compared to the mainstream. Compared with the mainstream, the ARGs profiles in the branches showed obvious higher spatial variability. Significant correlation between ARGs profiles and bacterial community structures were observed, and network analysis further showed that the ARGs were associated with their potential hosts, such as Ottowia and Novosphingobium. Redundancy discrimination analysis revealed that Cu content has a significant contribution to the increase of ARGs in the river. The microbial diversity index was negatively correlated with the abundance of the ARGs. These results provide evidence for the enrichment of ARGs in the agricultural influenced river and branches due to the joint influence of chemical and microbial variables.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.154739 | DOI Listing |
Ann Clin Microbiol Antimicrob
January 2025
Microbiology and Immunology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
Proteus mirabilis (P. mirabilis) is one of the most important causative pathogens associated with complicated urinary tract infections with a 20% incidence. For epidemiological determinations, several phenotypic and molecular typing methods have been implicated.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
H3 lysine 4 trimethylation (H3K4me3) modification and related regulators extensively regulate various crucial transcriptional courses in health and disease. However, the regulatory relationship between H3K4me3 modification and anti-tumor immunity has not been fully elucidated. We identified 72 independent prognostic genes of lung adenocarcinoma (LUAD) whose transcriptional expression were closely correlated with known 27 H3K4me3 regulators.
View Article and Find Full Text PDFPediatr Nephrol
January 2025
Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Center), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
Background: Steroid-resistant nephrotic syndrome (SRNS) is insensitive to steroid therapy and overwhelmingly progresses to kidney failure (KF), the known pathogenic genes of which include key subunits of the nuclear pore complex (NPC), a less-recognized contributor to glomerular podocyte injury.
Methods: After analyzing their clinical characterizations and obtaining parental consent, whole-exome sequencing (WES) was performed on patients with SRNS. Several nucleoporin (NUP) biallelic pathogenic variants were identified and further analyzed by cDNA-PCR sequencing from white cells of peripheral blood, minigene assay, immunohistochemical (IHC) staining, and electron microscopy (EM) ultrastructure observation of kidney biopsy, as well as multiple in silico prediction tools, including 3D protein modeling.
Sci Rep
January 2025
Department of Emergency Medicine, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China.
Our study aims to investigate the role of pyrimidine metabolism in prostate cancer and its associations with the immune microenvironment, drug sensitivity, and tumor mutation burden. Through transcriptomic and single-cell RNA sequencing analyses, we explored metabolic pathway enrichment, immune infiltration patterns, and differential gene expression in prostate cancer samples. The results showed that pyrimidine metabolism-related genes were significantly upregulated in the P2 subgroup compared to the P1 subgroup, with enhanced metabolic activity observed in basal and luminal epithelial cells.
View Article and Find Full Text PDFSci Data
January 2025
Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia.
The pomegranate (Punica granatum L.) is an ancient fruit-bearing tree known for its nutritional and antioxidant properties. They originated from the Middle East in regions having large farms including mountainous regions of Al-Baha in Saudi Arabia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!