Acute myeloid leukemia (AML) is a highly heterogeneous hematological neoplasm with low survival rates. Thus, the investigation of new therapeutic targets is essential. The Rac subfamily of GTPase proteins has been shown to participate in the physiopathology of hematological malignancies. However, their expression and function in AML remain unclear. In this study, we evaluated Rac1, Rac2 and Rac3 gene expressions in AML and their impact on clinical outcomes. We further investigated the effects of the in vitro treatment with a Rac inhibitor (EHT-1864) on AML cell lines. Rac3 expression was increased in AML derived from myelodysplastic syndromes compared to healthy donors. Rac2 expression did not differ between AML patients and healthy donors, but de novo AML patients with higher Rac2 presented lower overall survival. Oncogenic pathway gene-sets related to AKT/mTOR were identified as associated with Rac1, Rac2 and Rac3 expressions. EHT-1864 treatment reduced the viability of OCI-AML3, KG1 and Kasumi-1 cells in a time and dose-dependent manner. In OCI-AML3 cells, treatment with EHT-1864 induced apoptosis, autophagy, and led to the accumulation of cells in the G1 phase of the cell cycle. These changes were concomitant with alterations in p53 and cyclins. Dowregulation of the PI3K/AKT/mTOR pathway was also observed. Interestingly, the combined treatment of EHT-1864 and low doses of daunorubicin enhanced OCI-AML3 cell apoptosis. In conclusion, Rac2 expression is a prognostic factor in AML and our preclinical results suggest that Rac inhibition may be an attractive mechanism to compose the antineoplastic strategy for this disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2022.115990 | DOI Listing |
Ann Transl Med
December 2024
Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.
One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.
View Article and Find Full Text PDFExp Ther Med
February 2025
Department of Hematology, Etlik City Hospital, Ankara 06170, Turkey.
Whilst severe liver dysfunction is rarely encountered at the time of diagnosis for patients with acute myeloid leukemia (AML), mild elevations aminotransferase (<5 times the upper limit of normal) may be more frequently seen. Liver dysfunction at the time of diagnosis of AML is a parameter that requires investigation and can assist the clinicians in predicting prognosis. The aim of the present study was to investigate liver dysfunction at the time of diagnosis using the assoicated parameters in patients with AML.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa 9200293, Japan.
Acute myeloid leukaemia (AML) is a haematologic malignancy with high relapse rates in both adults and children. Leukaemic stem cells (LSCs) are central to leukaemopoiesis, treatment response and relapse and frequently associated with measurable residual disease (MRD). However, the dynamics of LSCs within the AML microenvironment is not fully understood.
View Article and Find Full Text PDFCancer Manag Res
January 2025
Medical Center of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, People's Republic of China.
The chronic myeloid leukemia (CML) is easily diagnosed by laboratory examination, however, rare BCR-ABL1 mRNA transcripts variants, such as e1a3 present diagnosis and therapeutic challenges. This case report details the diagnosis and management of a CML patient with the e1a3 transcript by FISH and RT-PCR. Following initial diagnosis, the patient was treated with the tyrosine kinase inhibitor (TKI) Flumatinib.
View Article and Find Full Text PDFEcancermedicalscience
November 2024
Internal Medicine Service, Sanatorio Sagrado Corazón, Buenos Aires, CP 1039, Argentina.
Plasmacytoid blast dendritic cell neoplasm is a rare subtype of acute leukaemia that represents less than 1% of haematologic neoplasms. It is characterised by skin involvement and leukaemic dissemination in the rest of the body. The immunophenotype is represented by the expression of CD4, CD56 and CD123.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!