The primary aim of this study is to establish the theoretical foundations for a solid-fluid biphasic mixture domain that can accommodate inertial effects and a viscous interstitial fluid, which can interface with a dynamic viscous fluid domain. Most mixture formulations consist of constituents that are either all intrinsically incompressible or compressible, thereby introducing inherent limitations. In particular, mixtures with intrinsically incompressible constituents can only model wave propagation in the porous solid matrix, whereas those with compressible constituents require internal variables, and related evolution equations, to distinguish the compressibility of the solid and fluid under hydrostatic pressure. In this study, we propose a hybrid framework for a biphasic mixture where the skeleton of the porous solid is intrinsically incompressible but the interstitial fluid is compressible. We define a state variable as a measure of the fluid volumetric strain. Within an isothermal framework, the Clausius-Duhem inequality shows that a function of state arises for the fluid pressure as a function of this strain measure. We derive jump conditions across hybrid biphasic interfaces, which are suitable for modeling hydrated biological tissues. We then illustrate this framework using confined compression and dilatational wave propagation analyses. The governing equations for this hybrid biphasic framework reduce to those of the classical biphasic theory whenever the bulk modulus of the fluid is set to infinity and inertia terms and viscous fluid effects are neglected. The availability of this novel framework facilitates the implementation of finite element solvers for fluid-structure interactions at interfaces between viscous fluids and porous-deformable biphasic domains, which can include fluid exchanges across those interfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8939891 | PMC |
http://dx.doi.org/10.1007/s00419-020-01851-8 | DOI Listing |
Sci Rep
January 2025
Institute for Antiviral Research, Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, 84321-5600, USA.
Zika virus (ZIKV) causes a variety of peripheral and central nervous system complications leading to neurological symptoms such as limb weakness. We used a mouse model to identify candidate genes potentially involved in causation or recovery from ZIKV-induced acute flaccid paralysis. Using Zikv and Chat chromogenic and fluorescence in situ RNA hybridization, electron microscopy, immunohistochemistry, and ZIKV RT-qPCR, we determined that some paralyzed mice had infected motor neurons, but motor neurons are not reduced in number and the infection was not present in all paralyzed mice; hence infection of motor neurons were not strongly correlated with paralysis.
View Article and Find Full Text PDFSmall Methods
January 2025
Electric Mobility and Tribology Research Group, Council of Scientific and Industrial Research Central Mechanical Engineering Research Institute, Mahatma Gandhi Avenue, Durgapur, West Bengal, 713209, India.
Integration of different active sites by heterostructure engineering is pivotal to optimize the intrinsic activities of an oxygen electrocatalyst and much needed to enhance the performance of rechargeable Zn-air batteries (ZABs). Herein, a biphasic nanoarchitecture encased in in situ grown N-doped graphitic carbon (MnO/Co-NGC) with heterointerfacial sites are constructed. The density functional theory model reveals formation of lattice oxygen bridged heterostructure with pyridinic nitrogen atoms anchored Co species, which facilitate adsorption of oxygen intermediates.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.
The development of monodisperse hybrid silica microspheres with highly regular pore structure and uniform distribution of functional groups have significant value in the biomolecular separation field. In this work, the short range ordered pore channels are precisely constructed onto the non-porous silica microsphere surface by a bi-phase assembly method, and the cylindrical silica channel introduced a plethora of vinyl groups by "one-pot" co-condensation to form vinyl hybrid silica shell. As hydrophilic interaction chromatography (HILIC) stationary phase, the vinyl hybrid core-shell silica microsphere is simply modified with zwitterion glutathione (SiO@SiO-GSH), in which the HILIC enrichment process is significantly shortened due to its specific porous characteristics.
View Article and Find Full Text PDFJ Bacteriol
December 2024
Pathogen Biology and Immunology Research Institute, Hebei North University, Zhangjiakou, Hebei, China.
is an obligate intracellular bacterium of eukaryotic cells characterized by a unique biphasic life cycle; its biosynthesis and replication must occur within a cytoplasmic vacuole or inclusion. Certain inclusion membrane proteins have been demonstrated to mediate the interactions between intra-inclusion chlamydial organisms and the host cell. It has been demonstrated previously that the -encoded Cpn0308 localizes to the inclusion membrane; however, its function remains unknown.
View Article and Find Full Text PDFPleomorphic adenoma (PA) is a benign salivary gland tumor with diverse cytomorphological and architectural features, typically presenting biphasic ductal structures within a chondromyxoid matrix. We report a unique case of PA where dense lymphoid infiltration disrupted these structures, resulting in duct-like slit structures lined with a single layer of spindle cells, lacking the biphasic pattern. These spindle cells demonstrated myoepithelial nature, confirmed by positive immunostaining for pan-cytokeratin, S100 protein, and calponin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!