Chemical Constituents and Molecular Mechanism of the Yellow Phenotype of Yellow Mushroom ().

J Fungi (Basel)

Qinghai Province Key Laboratory of Crop Molecular Breeding, Xining 810008, China.

Published: March 2022

(1) Background: Yellow mushroom () is a natural resource that is highly nutritional, has a high economic value, and is found in Northwest China. Despite its value, the chemical and molecular mechanisms of yellow phenotype formation are still unclear. (2) Methods: This study uses the combined analysis of transcriptome and metabolome to explain the molecular mechanism of the formation of yellow mushroom. Subcellular localization and transgene overexpression techniques were used to verify the function of the candidate gene. (3) Results: 112 compounds had a higher expression in yellow mushroom; riboflavin was the ninth most-expressed compound. HPLC showed that a key target peak at 23.128 min under visible light at 444 nm was Vb2. All proteins exhibited the closest relationship with H97. One riboflavin transporter, CL911.Contig3_All (FlMCH5), was highly expressed in yellow mushrooms with a different value (log fold change) of -12.98, whereas it was not detected in white mushrooms. FlMCH5 was homologous to the riboflavin transporter MCH5 or MFS transporter in other strains, and the FlMCH5-GFP fusion protein was mainly located in the cell membrane. Overexpression of FlMCH5 in tobacco increased the content of riboflavin in three transgenic plants to 26 μg/g, 26.52 μg/g, and 36.94 μg/g, respectively. (4) Conclusions: In this study, it is clear that riboflavin is the main coloring compound of yellow mushrooms, and is the key transport regulatory gene that produces the yellow phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949800PMC
http://dx.doi.org/10.3390/jof8030314DOI Listing

Publication Analysis

Top Keywords

yellow mushroom
16
yellow phenotype
12
yellow
9
molecular mechanism
8
riboflavin transporter
8
yellow mushrooms
8
riboflavin
5
chemical constituents
4
constituents molecular
4
mechanism yellow
4

Similar Publications

Light-emitting diode (LED) lamps are efficient elicitors of secondary metabolites. To investigate the influence of LED light on steviol glycosides (SGs) and phenolic compounds biosynthesis, stevia shoots were cultured under the following LED lights: white-WL, blue-B, red-R, 70% red and 30% blue-RB, 50% UV, 35% red and 15% blue-RBUV, 50% green, 35% red and 15% blue-RBG, 50% yellow, 35% red and 15% blue-RBY, 50% far-red, 35% red and 15% blue-RBFR and white fluorescent light (WFl, control). RBG light stimulated shoots' biomass production.

View Article and Find Full Text PDF

Silver nanoparticle solutions (AgNPs) of some mushrooms: Pleurotus ostreatus, Agaricus bisporus and Agaricus campestris were prepared and characterized using Transmission Electron Microscopy (TEM), Fourier-Transform Infrared (FTIR) spectroscopy, X-Ray Diffraction (XRD) analysis and Energy Dispersive X-ray (EDX) spectroscopy. Each of the myco-sythesized AgNPs was plated against strains of Aspergillus flavus and A. ochraceous, at 5, 10 and 15% concentrations.

View Article and Find Full Text PDF

Members of the genera and are vital for litter decomposition in tropical and humid temperate forests. In this study, the difference in morphological features among , , and was confirmed by DNA data. and showed separate relationships with other species in the ITS and nLSU combined dataset utilized for the phylogeny of sect.

View Article and Find Full Text PDF

Background: Anaphylaxis is a systemic allergic reaction that is potentially life-threatening. Occupational anaphylaxis is an anaphylaxis that occurs in an occupational context. In this position paper, we propose diagnostic criteria for occupational anaphylaxis and provide an overview of the current state of knowledge in terms of prevalence, triggers, prevention, and management.

View Article and Find Full Text PDF

Fungal Chitin Nanofibrils Improve Mechanical Performance and UV-Light Resistance in Carboxymethylcellulose and Polyvinylpyrrolidone Films.

Biomacromolecules

December 2024

Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, Bilbao, Biscay 48013, Spain.

Materials from renewable carbon feedstock can limit our dependence on fossil carbon and facilitate the transition from linear carbon-intensive economies to sustainable, circular economies. Chitin nanofibrils (ChNFs) isolated from white mushrooms offer remarkable environmental benefits over conventional crustacean-derived nanochitin. Herein, ChNFs are utilized to reinforce polymers of natural and fossil origin, carboxymethyl cellulose (CMC) and polyvinylpyrrolidone (PVP), respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!