spores initiate more than 3,000,000 chronic and 300,000 invasive diseases annually, worldwide. Depending on the immune status of the host, inhalation of these spores can lead to a broad spectrum of disease, including invasive aspergillosis, which carries a 50% mortality rate overall; however, this mortality rate increases substantially if the infection is caused by azole-resistant strains or diagnosis is delayed or missed. Increasing resistance to existing antifungal treatments is becoming a major concern; for example, resistance to azoles (the first-line available oral drug against species) has risen by 40% since 2006. Despite high morbidity and mortality, the lack of an in-depth understanding of pathogenesis and host response has hampered the development of novel therapeutic strategies for the clinical management of fungal infections. Recent advances in sample preparation, infection models and imaging techniques applied in vivo have addressed important gaps in fungal research, whilst questioning existing paradigms. This review highlights the successes and further potential of these recent technologies in understanding the host-pathogen interactions that lead to aspergillosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954776 | PMC |
http://dx.doi.org/10.3390/jof8030264 | DOI Listing |
BMC Cancer
January 2025
Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Background: Even though major improvements have been made in the treatment of myeloma, the majority of patients eventually relapse or progress. Patients with multiple myeloma who relapse after initial high-dose chemotherapy with autologous stem cells have a median progression free survival up to 2-3 years, depending on risk factors such as previous remission duration. In recent years, growing evidence has suggested that allogeneic stem cell transplantation could be a promising treatment option for patients with relapsed or progressed multiple myeloma.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Department of Tropical Medicine, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Yonsei-Ro 50-1, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
Interactions between microbial communities and the host can modulate mosquito biology, including vector competence. Therefore, future vector biocontrol measures will utilize these interactions and require extensive monitoring of the mosquito microbiome. Metabarcoding strategies will be useful for conducting vector monitoring on a large scale.
View Article and Find Full Text PDFCommun Biol
January 2025
State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
Global warming has threatened all-rounded hierarchical biosphere by reconstructing eco-structure and bringing biodiversity variations. Pacific white shrimp, a successful model of worldwide utilizing marine ectothermic resources, is facing huge losses due to multiple diseases relevant to intestinal microbiota (IM) dysbiosis during temperature fluctuation. However, how warming mediates shrimp health remains poorly understood.
View Article and Find Full Text PDFSci Data
January 2025
Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
Terrestrial geothermal springs, reminiscent of early Earth conditions, host diverse and abundant populations of Archaea. In this study, we reconstructed 2,949 metagenome-assembled genomes (MAGs) from 152 metagenomes collected over six years from 48 geothermal springs in Tengchong, China. Among these MAGs, 1,431 (49%) were classified as high-quality, while 1,518 (51%) were considered as medium-quality.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Suita, Japan.
Integration of human papillomavirus (HPV) into the host genome drives HPV-positive head and neck squamous cell carcinoma (HPV HNSCC). Whole-genome sequencing of 51 tumors revealed intratumor heterogeneity of HPV integration, with 44% of breakpoints subclonal, and a biased distribution of integration breakpoints across the HPV genome. Four HPV physical states were identified, with at least 49% of tumors progressing without integration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!