AI Article Synopsis

  • The study investigates proteomic changes in follicular fluid from small antral follicles in women with polycystic ovaries (PCO) compared to those without, focusing on the role of these changes in oocyte development.
  • Using label-free proteomics, researchers identified 1436 proteins, with 115 showing dysregulation in PCO samples, indicating a difference in the ovarian environment.
  • Key pathways related to the immune system, inflammation, and oxidative stress were found to be upregulated in PCO, while important processes like extracellular matrix interactions were downregulated, which may negatively impact oocyte quality.

Article Abstract

Polycystic ovaries (PCO) contain antral follicles that arrest growing around 3-11 mm in diameter, perturbing the dominant follicle's selection and the subsequent ovulatory process. Proteomic alterations of PCO follicular fluid (FF) (i.e., microenvironment in which the oocyte develops until ovulation) have been studied from large follicles in connection with oocyte pickup during ovarian stimulation. The present study aimed to detect proteomic alterations in FF from unstimulated human small antral follicles (hSAF) obtained from PCO. After performing deep-sequencing label-free proteomics on 10 PCO and 10 non-PCO FF samples from unstimulated hSAF (4.6-9.8 mm), 1436 proteins were identified, of which 115 were dysregulated in PCO FF samples. Pathways and processes related to the immune system, inflammation, and oxidative stress appeared to be upregulated in PCO, while extracellular matrix receptors interactions, the collagens-containing extracellular matrix, and the regulation of signaling were downregulated. The secreted proteins SFRP1, THBS4, and C1QC significantly decreased their expression in PCO FF, and this downregulation was suggested to affect future oocyte competence. In conclusion, our study revealed, for the first time, evidence of proteomic alterations occurring in the FF of PCO hSAF that may be related to the dysfunction of follicular growth and subsequent oocyte competence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954146PMC
http://dx.doi.org/10.3390/life12030391DOI Listing

Publication Analysis

Top Keywords

proteomic alterations
16
antral follicles
12
follicular fluid
8
human small
8
small antral
8
pco
8
extracellular matrix
8
oocyte competence
8
proteomic
4
alterations follicular
4

Similar Publications

Staphylococcus warneri is a gram-positive mesophilic bacterium, resilient to extreme environmental conditions. To unravel its Osmotic Tolerance Response (OTR), we conducted proteomic and metabolomic analyses under drought (PEG) and salt (NaCl) stresses. Our findings revealed 1340 differentially expressed proteins (DEPs) across all treatments.

View Article and Find Full Text PDF

Proteomic signatures of Alzheimer's disease and Lewy body dementias: A comparative analysis.

Alzheimers Dement

December 2024

Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum, Stockholm, Sweden.

Introduction: We aimed to identify unique proteomic signatures of Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and Parkinson's disease dementia (PDD).

Methods: We conducted a comparative proteomic analysis of 33 post mortem brains from AD, DLB, and PDD individuals without dementia focusing on prefrontal, cingulate, and parietal cortices, using weighted gene co-expression network analyses with differential enrichment analysis.

Results: Network modules revealed hub proteins common to all dementias.

View Article and Find Full Text PDF

Increasing antifungal drug resistance is a major concern associated with human fungal pathogens like Aspergillus fumigatus. Genetic mutation and epimutation mechanisms clearly drive resistance, yet the epitranscriptome remains relatively untested. Here, deletion of the A.

View Article and Find Full Text PDF

Whole transcriptome and proteome analyses identify ncRNAs and mRNAs to predict competing endogenous RNA networks in hepatitis B virus-induced hepatocellular carcinoma.

Microb Pathog

December 2024

Department of Urology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China. Electronic address:

The presence of the Hepatitis B virus (HBV) is considered as a valuable risk factor of hepatocellular carcinoma (HCC). To more deeply comprehend the molecular mechanism and transcriptome of HBV-induced HCC, we utilized tandem mass tagging (TMT)-based quantitative proteomics analysis and whole-transcriptome sequencing to analyze three sets of matched HepG2 hepatoma cells and HBV-positive HepAD38 cells. The differentially expressed (DE) proteins (1596), mRNAs (5263), miRNAs (581), lncRNAs (2672) and circRNAs (222) were subjected to differential expression and enrichment analyses in order to thoroughly assess the gene-regulatory circuits of HBV-induced HCC.

View Article and Find Full Text PDF

Quantitative redox proteomics links thioredoxin to heavy ion resistance in Deinococcus radiodurans.

Free Radic Biol Med

December 2024

State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Hengyang Medical School, University of South China, Hengyang 421001, China. Electronic address:

Heavy ion radiotherapy is an effective treatment for tumors, but its therapeutic efficacy is limited in cancer cells with radiation resistance. Deinococcus radiodurans, well known for its extremely resisting various stresses, was used to explore radioresistant mechanism. We used quantitative redox proteomics to track the dynamic changes in the global redox state after C irradiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!