Production and Characterization of the Third-Generation Oxide Nanotubes on Ti-13Zr-13Nb Alloy.

Materials (Basel)

Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.

Published: March 2022

In the group of vanadium-free titanium alloys used for applications for long-term implants, the Ti-13Zr-13Nb alloy has recently been proposed. The production of a porous layer of oxide nanotubes (ONTs) with a wide range of geometries and lengths on the Ti-13Zr-13Nb alloy surface can increase its osteoinductive properties and enable intelligent drug delivery. This work concerns developing a method of electrochemical modification of the Ti-13Zr-13Nb alloy surface to obtain third-generation ONTs. The effect of the anodizing voltage on the microstructure and thickness of the obtained oxide layers was conducted in 1 M CHO + 4 wt% NHF electrolyte in the voltage range 5-35 V for 120 min at room temperature. The obtained third-generation ONTs were characterized using SEM, EDS, SKP, and 2D roughness profiles methods. The preliminary assessment of corrosion resistance carried out in accelerated corrosion tests in the artificial atmosphere showed the high quality of the newly developed ONTs and the slight influence of neutral salt spray on their micromechanical properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948800PMC
http://dx.doi.org/10.3390/ma15062321DOI Listing

Publication Analysis

Top Keywords

ti-13zr-13nb alloy
16
oxide nanotubes
8
alloy surface
8
third-generation onts
8
production characterization
4
characterization third-generation
4
third-generation oxide
4
ti-13zr-13nb
4
nanotubes ti-13zr-13nb
4
alloy
4

Similar Publications

In Vitro Bioelectrochemical Properties of Second-Generation Oxide Nanotubes on Ti-13Zr-13Nb Biomedical Alloy.

Materials (Basel)

February 2023

Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.

Surface charge and in vitro corrosion resistance are some of the key parameters characterizing biomaterials in the interaction of the implant with the biological environment. Hence, this work investigates the in vitro bioelectrochemical behavior of newly developed oxide nanotubes (ONTs) layers of second-generation (2G) on a Ti-13Zr-13Nb alloy. The 2G ONTs were produced by anodization in 1 M (NH)SO solution with 2 wt.

View Article and Find Full Text PDF

Influence of Anodizing Conditions on Biotribological and Micromechanical Properties of Ti-13Zr-13Nb Alloy.

Materials (Basel)

January 2023

Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.

The biomedical Ti-13Zr-13Nb bi-phase (α + β) alloy for long-term applications in implantology has recently been developed. The porous oxide nanotubes' (ONTs) layers of various geometries and lengths on the Ti-13Zr-13Nb alloy surface can be produced by anodizing to improve osseointegration. This work was aimed at how anodizing conditions determinatine the micromechanical and biotribological properties of the Ti-13Zr-13Nb alloy.

View Article and Find Full Text PDF

Titanium and its alloys are commonly preferred materials used for biomedical implants. However, these alloys have issues related to corrosion resistance as a result of the aggressive attack of human body fluids. Several researchers have attempted to produce a ceramic coating via physical vapour deposition (PVD).

View Article and Find Full Text PDF

Production and Characterization of the Third-Generation Oxide Nanotubes on Ti-13Zr-13Nb Alloy.

Materials (Basel)

March 2022

Faculty of Science and Technology, Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.

In the group of vanadium-free titanium alloys used for applications for long-term implants, the Ti-13Zr-13Nb alloy has recently been proposed. The production of a porous layer of oxide nanotubes (ONTs) with a wide range of geometries and lengths on the Ti-13Zr-13Nb alloy surface can increase its osteoinductive properties and enable intelligent drug delivery. This work concerns developing a method of electrochemical modification of the Ti-13Zr-13Nb alloy surface to obtain third-generation ONTs.

View Article and Find Full Text PDF

Newly prepared titanium alloy (Ti-13Zr-13Nb (TZN)) using powder metallurgy is considered in this investigation. Titanium alloys (TZN) are used in hip and knee replacement for orthopedic implants. Conventional machining, TZN alloys produce higher tool wear rate and poor surface quality, but this can be reduced by Electrical Discharge Machining (EDM) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!