A combinatorial Co-Cr-Fe-Ni compositional complex alloy (CCA) thin film disk with a thickness of 1 µm and a diameter of 10 cm was processed by multiple-beam-sputtering physical vapor deposition (PVD) using four pure metal sources. The chemical composition of the four constituent elements varied between 4 and 64 at.% in the film, depending on the distance from the four PVD sources. The crystal structure, the crystallite size, the density of lattice defects (e.g., dislocations and twin faults) and the crystallographic texture were studied as a function of the chemical composition. It was found that in a wide range of elemental concentrations a face-centered cubic (fcc) structure with {111} crystallographic texture formed during PVD. Considering the equilibrium phase diagrams, it can be concluded that mostly the phase composition of the PVD layer is far from the equilibrium. Body-centered cubic (bcc) and hexagonal-close packed (hcp) structures formed only in the parts of the film close to Co-Fe and Co-Cr sources, respectively. A nanocrystalline microstructure with the grain size of 10-20 nm was developed in the whole layer, irrespective of the chemical composition. Transmission electron microscopy indicated a columnar growth of the film during PVD. The density of as-grown dislocations and twin faults was very high, as obtained by synchrotron X-ray diffraction peak profile analysis. The nanohardness and the elastic modulus were determined by indentation for the different chemical compositions on the combinatorial PVD film. This study is the continuation of a former research published recently in Nagy et al., Materials 14 (2021) 3357. In the previous work, only the fcc part of the sample was investigated. In the present paper, the study was extended to the bcc, hcp and multiphase regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951632 | PMC |
http://dx.doi.org/10.3390/ma15062319 | DOI Listing |
Symmetry-breaking spin-state transitions in two of three isostructural salts of MnIII spin-crossover cations, [MnIII(3-OMe-5-NO2-sal2323)]+, with heavy anions are reported. The ReO4- salt undergoes two-step spin crossover which is coupled with a re-entrant symmetry-breaking structural phase transition between a high temperature phase (S = 2, C2/c), an intermediate ordered phase (S = 1/S = 2, P21/c), and a low temperature phase (S = 1, C2/c). The AsF6- complex undergoes an abrupt transition between a high temperature phase (S = 2, C2/c) and a low temperature ordered phase (S = 1/S = 2, P-1).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
East China University of Science and Technology, School of Chemistry and Molecular Engineering, Meilong Road 130, 200237, Shanghai, CHINA.
Kinetically controlled self-assembly is garnering increasing interest in the field of supramolecular polymers and materials, yet examples involving dynamic covalent exchange remain relatively unexplored. Here we report an unexpected dynamic covalent polymeric system whose aqueous self-assembly pathway is strongly influenced by the kinetics of evaporation of water. The key design is to integrate dual dynamic covalent bonds-including disulfide bonds and boroxine/borate-into a dynamic equilibrium system of monomers, polymers, and materials.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Air pollution is a leading contributor to the global disease burden. However, the complex nature of the chemicals to which humans are exposed through inhalation has obscured the identification of the key compounds responsible for diseases. Here, we develop a network topology-based framework to identify key toxic compounds in the airborne chemical exposome.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Inadvertent exposure to aristolochic acids (AAs) is causing chronic renal disease worldwide, with aristolochic acid I (AA-I) identified as the primary toxic agent. This study employed chemical methods to investigate the mechanisms underlying the nephrotoxicity and carcinogenicity of AA-I. Aristolochic acid II (AA-II), which has a structure similar to that of AA-I, was investigated with the same methods for comparison.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Lysine demethylases (KDMs) catalyze the oxidative removal of the methyl group from histones using earth-abundant iron and the metabolite 2-oxoglutarate (2OG). KDMs have emerged as master regulators of eukaryotic gene expression and are novel drug targets; small-molecule inhibitors of KDMs are in the clinical pipeline for the treatment of human cancer. Yet, mechanistic insights into the functional heterogeneity of human KDMs are limited, necessitating the development of chemical probes for precision targeting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!