AI Article Synopsis

  • Nanosized zeolite Y is widely used in industries like petroleum refining and water treatment, but ball milling to reduce its size can decrease its crystallinity.
  • Researchers added biodegradable cellulose nanofibrils (CNFs) during wet ball milling to protect zeolite Y from damage, finding that a 1:1 ratio of zeolite Y to CNFs yielded the best results with a median particle size of 100 nm and a crystallinity index of 32%.
  • The study showed that using CNFs not only preserved the structure of zeolite Y but also significantly improved its ability to adsorb methylene blue dye, with capacities increasing from 10.66 mg/g to 29.26 mg/g.

Article Abstract

Nanosized zeolite Y is used in various applications from catalysis in petroleum refining to nanofillers in water treatment membranes. Ball milling is a potential and fast technique to decrease the particle size of zeolite Y to the nano range. However, this technique is associated with a significant loss of crystallinity. Therefore, in this study, we investigate the effect of adding biodegradable and recyclable cellulose nanofibrils (CNFs) to zeolite Y in a wet ball milling approach. CNFs are added to shield the zeolite Y particles from harsh milling conditions due to their high surface area, mechanical strength, and water gel-like format. Different zeolite Y to CNFs ratios were studied and compared to optimize the ball milling process. The results showed that the optimal zeolite Y to CNFs ratio is 1:1 to produce a median particle size diameter of 100 nm and crystallinity index of 32%. The size reduction process provided accessibility to the zeolite pores and as a result increased their adsorption capacity. The adsorption capacity of ball-milled particles for methylene blue increased to 29.26 mg/g compared to 10.66 mg/g of the pristine Zeolite. These results demonstrate the potential of using CNF in protecting zeolite Y particles and possibly other micro particles during ball milling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8954412PMC
http://dx.doi.org/10.3390/ma15062258DOI Listing

Publication Analysis

Top Keywords

ball milling
20
zeolite
10
cellulose nanofibrils
8
nanosized zeolite
8
particle size
8
zeolite particles
8
zeolite cnfs
8
adsorption capacity
8
milling
6
ball
5

Similar Publications

We demonstrate the application of mechanochemistry in the synthesis of indolone-based photoswitches (hemiindigos, hemithioindigos, and oxindoles) via Knoevenagel condensation reactions. Utilizing ball-milling and an organic base (piperidine) acting as catalyst and solvent for liquid assisted grinding (LAG) conditions, we achieve rapid, solvent-free transformations, obtaining a set of known and previously unreported photoswitches, including highly functional amino acid-based photoswitches, multichromophoric derivatives and photoswitchable cavitands based on resorcin[4]arenes. The reaction under mechanochemical conditions gives moderate-to-high yields and is highly stereoselective leading to Z-isomers of hemiindigos and hemithioindigos and E-isomers of oxindoles.

View Article and Find Full Text PDF

In response to the demand for epoxy-based dielectric substrates with low dielectric loss in high-frequency and high-speed signal transmission applications, this study presents a surface-engineered filler material. Utilizing ball-milling, surface-modified aluminum flakes containing organic (stearic acid) and inorganic (aluminum oxide) coatings are developed. Incorporation of the filler into the epoxy matrix results in a significant increase in dielectric permittivity, by nearly 5 times (from 4.

View Article and Find Full Text PDF

Role of antioxidative stress activity of Fucoxanthin nanoparticle as hepatoprotective in diabetic rats.

Pak J Pharm Sci

January 2025

Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.

This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.

View Article and Find Full Text PDF

One of the long-standing challenges in the field of titanium matrix composites is achieving the synergistic optimization of high strength and excellent ductility. When pursuing high strength characteristics in materials, it is often difficult to consider their ductility. Therefore, this study prepared a Ti1400 alloy and in situ synthesized TiC-reinforced (TiC + Ti1400)/TC4 composites using low-energy ball milling and spark plasma sintering technology, followed by hot rolling, to obtain titanium matrix composites with excellent mechanical properties.

View Article and Find Full Text PDF

Mechanochemical Functionalization of Oxidized Carbon Black with PLA.

Molecules

December 2024

Dipartimento di Chimica e Biologia "A. Zambelli", Università degli Studi di Salerno, Via Giovanni Paolo II, I-84084 Fisciano, SA, Italy.

The functionalization of carbon black (CB) represents a promising strategy to enhance its compatibility with polymers while addressing sustainability concerns. In this study, a solvent-free mechanochemical approach (ball milling) is proposed for the functionalization of oxidized carbon black (oCB) with post-consumed polylactic acid (PLA), overcoming the environmental drawbacks of conventional methods that mostly rely on toxic solvents and catalysts. The functionalized carbon black (f-CB) was characterized by Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), and thermogravimetric analysis (TGA) to confirm the successful modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!