Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study focused on the vibrating fluidized-bed-type powder feeder used in HVAF thermal spraying equipment. This feeder has been used in thermal spraying equipment and industrial applications. However, particulate materials' flow mechanism and stable transport characteristics have not been fully understood. This study experimentally investigated the fluidization characteristics, powder dispersion state, and powder transportation characteristics of AlO particles during vertical vibration fluidization. The material used was AlO particles of 2.9 μm and 3808 kg/m, classified as the group C particles in the Geldart diagram. As experimental conditions, the fluidized air velocity to the bottom of the powder bed and the vibration intensity in the vertical direction changed. The critical fluidization air velocity was defined to evaluate the generating powder flow by vertical vibrating fluidization. As a result, good fluidization of the powder bed of AlO was obtained by the vertical vibration, as well as an airflow that was higher than the critical fluidization air velocity. Regarding powder transportation characteristics, it was clarified that the fluidized air velocity at the bottom of the powder dispersion vessel and the pressure difference from the powder dispersion vessel to the transportation part significantly affect the mass flow rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8949412 | PMC |
http://dx.doi.org/10.3390/ma15062191 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!