Designing corrugated board packaging is a real challenge, especially when the packaging material comes from multiple recycling. Recycling itself is a pro-ecological and absolutely necessary process, but the mechanical properties of materials that are processed many times deteriorate with the number of cycles. Manufacturers are trying to use unprecedented design methods to preserve the load-bearing capacity of packaging, even when the material itself is of deteriorating quality. An additional obstacle in the process of designing the structure of paper packaging is the progressive systematic reduction of the grammage (the so-called lightweight process) of corrugated cardboard. Therefore, this research presents a critical look at the process of optimal selection of corrugated cardboard for packaging structures, depending on the paper used. The study utilizes analytical, simplified formulas to estimate the strength of cardboard itself as well as the strength of packaging, which are then analyzed to determine their sensitivity to changes in cardboard components, such as the types of paper of individual layers. In the performed sensitivity analysis, numerical homogenization was used, and the influence of initial imperfections on the packaging mechanics was determined. The paper presents a simple algorithm for the optimal selection of the composition of corrugated cardboard depending on the material used and the geometry of the packaging, which allows for a more conscious production of corrugated cardboard from materials derived, e.g., from multiple recycling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950760 | PMC |
http://dx.doi.org/10.3390/ma15062149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!