Aluminum-based composites with characteristics such as low density and high strength to weight ratio have been identified to be one of the best-emerging alternatives. The lightweight composite is gaining popularity, particularly in the automotive industry. The composite's qualities make it a prospective material to replace significant materials that are now used in the automobile industry. For lightweight products, various weight reduction solutions were proposed. In the present work, one such lightweight composite was fabricated by using a stir casting process, which includes reinforcement powders viz. carbon nanotube and fly ash to pure aluminum. The use of fly ash helps in reducing the overall associated cost of the material as well as provides low density. The work aims to identify the amount of fly ash (by weight %) suitable to avail good mechanical properties. In concern with the mechanical properties, density, yield strength, ultimate tensile strength, and wear resistance of the composite specimen were examined. Moreover, the artificial neural network was adopted to identify minimum volumetric wear for a given set of conditions. From the results, it was perceived that with the increase in fly ash content, the volumetric wear of the fabricated composite decreases. However, with the increase in load and speed, the volumetric wear rate increases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8948959 | PMC |
http://dx.doi.org/10.3390/ma15062015 | DOI Listing |
Sci Rep
January 2025
School of City and Architecture Engineering, Zaozhuang University, Zaozhuang, 277160, Shandong, China.
To study the enhancement effect of carbon nanotubes (CNTs) on the splitting tensile properties of foamed concrete backfill in which cement and fly ash were used as the cementitious materials and natural sand was used as the aggregate, specimens of CNT-modified foamed concrete backfill were prepared. Brazilian splitting tests were used to investigate the splitting tensile strength of the CNT-modified foamed concrete backfill, and the digital speckle correlation method was used to analyze the stress field characteristics and crack expansion law of the specimens during splitting tensile testing. The stress-strain characteristics and energy dissipation laws of the backfill were studied at various static loading rates, and a relationship between the splitting tensile strength, ultimate strain, and loading rate was established.
View Article and Find Full Text PDFChempluschem
January 2025
China University of Mining and Technology, School of electrical and power engineering, NO.1, Daxue Road, 221116, Xuzhou, CHINA.
The mining industry produces a large amount of industrial solid waste every year. Among them, fly ash (FA), slag and tailings are the three main solid wastes, which can cause soil pollution, air pollution, water pollution and serious threat to human health if not handled properly. At present, the treatment methods of industrial solid waste mainly include direct landfill, recovery of high-value components, production of construction materials, etc.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Electric Power Engineering, South China University of Technology, Guangzhou, Guangdong, 510641, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, Guangzhou, Guangdong, 510641, China. Electronic address:
Background: Rapid and accurate detection of the biomass potassium (K) content in biomass is crucial for mitigating ash deposition and fouling issues in biomass fuel combustion processes. Laser-induced breakdown spectroscopy (LIBS) offers a promising approach for rapid analysis of biomass elemental. However, the accuracy of LIBS detection is susceptible to chemical matrix effects.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, UK.
The evaluation of the mechanical performance of fly ash-recycled mortar (FARM) is a necessary condition to ensure the efficient utilization of recycled fine aggregates. This article describes the design of nine mix proportions of FARMs with a low water/cement ratio and screens six mix proportions with reasonable flowability. The compressive strengths of FARMs were tested, and the influence of the water/cement ratio (/) and age on the compressive strength was analyzed.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Jiangsu Key Laboratory Environmental Impact and Structural Safety in Engineering, China University of Mining and Technology, Xuzhou 221116, China.
The low hydration degree of fly ash in Fly Ash Unburned Lightweight Aggregate (FULA) is not conducive to the development of the mechanical properties of lightweight aggregates and their concrete. In this paper, FULA was immersed in an alkaline solution with the purpose of improving the mechanical properties of FULA and its concrete. Firstly, FULA was prepared using fly ash as the main raw material.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!