Drought has exacerbated morbidity and mortality worldwide. Here, a time series study was conducted in northern Bangladesh to evaluate the impact of drought on selected causes of mortality during 2007-2017. Rainfall and temperature data from six meteorological stations were used to analyze drought and non-drought periods and to categorize mild, moderate, severe, and extreme drought based on the 3-month and 12-month Standardized Precipitation Index (SPI) and Standardized Precipitation Evaporation Index (SPEI). A generalized linear model with Poisson regression with log link, a negative binomial with log link, and a zero-inflated Poisson model were used to determine associations between drought severity and mortality. The SPI and SPEI produced slightly different analysis results. Compared with the SPEI, the SPI showed a stronger and more sensitive correlation with mortality. The relative risk for respiratory disease mortality was high, and Saidpur was the most vulnerable area. Health care expenditure was negatively associated with mortality. High temperatures during the drought period were associated with suicide-related mortality in Rajshahi. The impact of drought on mortality differed with small changes in climate. The findings of this study improve our understanding of the differences between the two most used drought indicators and the impact of drought on mortality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8951054 | PMC |
http://dx.doi.org/10.3390/ijerph19063425 | DOI Listing |
Plants (Basel)
January 2025
Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche (UNIVPM), Via Brecce Bianche 10, 60131 Ancona, Italy.
Water scarcity is an ecological issue affecting over 10% of Europe. It is intensified by rising temperatures, leading to greater evaporation and reduced precipitation. Agriculture has been confirmed as the sector accounting for the highest water consumption globally, and it faces significant challenges relating to drought, impacting crop yields and food security.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
Plants face a range of environmental stresses, such as heat and drought, that significantly reduce their growth, development, and yield. Plants have developed complex signaling networks to regulate physiological processes and improve their ability to withstand stress. The key regulators of plant stress responses include polyamines (PAs) and gaseous signaling molecules (GSM), such as hydrogen sulfide (HS), nitric oxide (NO), methane (CH), carbon monoxide (CO), carbon dioxide (CO), and ethylene (ET).
View Article and Find Full Text PDFPlants (Basel)
January 2025
Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil.
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Key Laboratory of Mountain Hazards and Earth Surface Processes, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
Climate change has led to an increasing frequency of droughts, potentially undermining soil stability. In such a changing environment, the shallow reinforcement effect of plant roots often fails to meet expectations. This study aims to explore whether this is associated with the alteration of plant traits as a response to environmental change.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Faculty of Biology, Technische Universität Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.
Drought and flood (water stress) alter plant metabolism, impacting the phytochemical content and biological effects. Using spectrophotometric, HPLC, and electrophoretic methods, we analyze the effects of water stress on broccoli ( L. convar.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!