Acute tobacco cigarette (TC) smoking increases blood pressure and sympathetic nerve activity, whereas there are scarce data on the impact of electronic cigarette (EC) smoking. We assessed the acute effects of TC, EC and sham smoking on blood pressure, heart rate and sympathetic nervous system. Methods: We studied 12 normotensive male habitual smokers (mean age 33 years) free of cardiovascular disease. The study design was randomized and sham controlled with three experimental sessions (sham smoking, TC smoking and EC smoking). After baseline measurements at rest, the subjects were then asked to smoke (puffing habits left uncontrolled) two TC cigarettes containing 1.1 mg nicotine, EC smoking or simulated smoking with a drinking straw with a filter (sham smoking), in line with previous methodology. Results: EC smoking at 5 and 30 min compared to baseline was accompanied by the augmentation of mean arterial pressure (MAP) and heart rate (p < 0.001 for all). The muscle sympathetic nerve activity (MSNA) decrease was significant during both TC and EC sessions (p < 0.001 for both comparisons) and was similar between them (−25.1% ± 9.8% vs. −34.4% ± 8.3%, respectively, p = 0.018). Both MSNA decreases were significantly higher (p < 0.001 for both comparisons) than that elicited by sham smoking (−4.4% ± 4.8%). Skin sympathetic nerve activity increase was significant in both TC and EC groups (p < 0.001 for both comparisons) and similar between them (73.4% ± 17.9% and 71.9% ± 7%, respectively, p = 0.829). Conclusions: The unfavorable responses of sympathetic and arterial pressure to EC smoking are similar to those elicited by TC in healthy habitual smokers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8952787PMC
http://dx.doi.org/10.3390/ijerph19063237DOI Listing

Publication Analysis

Top Keywords

sympathetic nerve
16
nerve activity
16
sham smoking
16
smoking
13
cigarette smoking
12
blood pressure
12
0001 comparisons
12
acute effects
8
tobacco cigarette
8
heart rate
8

Similar Publications

People in Eastern Asia, including Japan, traditionally consume higher amounts of sodium chloride than in the United States and Western Europe, and it is common knowledge that impaired insulin secretion-rather than insulin resistance-is highly prevalent in Asian people who have diabetes mellitus. We previously reported that mice fed a high-fat and high-sodium chloride (HFHS) diet had a relatively lower degree of obesity than mice fed a high-fat diet, but had a comparatively impaired insulin secretion. Sodium-glucose cotransporter-2 (SGLT2) inhibitors have been shown to dampen down the sympathetic nervous system, which reportedly is activated by a high-sodium chloride diet.

View Article and Find Full Text PDF

The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.

View Article and Find Full Text PDF

Complex regional pain syndrome (CRPS) is a chronic pain condition characterized by significant sensory, motor, and autonomic dysfunction, often following trauma or nerve injury. Historically known as causalgia and reflex sympathetic dystrophy, CRPS manifests as severe, disproportionate pain, often accompanied by hyperalgesia, allodynia, trophic changes, and motor impairments. Classified into type I (without nerve injury) and type II (associated with nerve damage), CRPS exhibits a complex pathophysiology involving peripheral and central sensitization, neurogenic inflammation, maladaptive brain plasticity, and potential autoimmune and psychological influences.

View Article and Find Full Text PDF

Increased nerve density adversely affects outcome in colorectal cancer and denervation suppresses tumor growth.

J Transl Med

January 2025

Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.

Background: The colon and rectum are highly innervated, with neural components within the tumor microenvironment playing a significant role in colorectal cancer (CRC) progression. While perineural invasion (PNI) is associated with poor prognosis in CRC, the impact of nerve density and diameter on tumor behavior remains unclear. This study aims to evaluate the prognostic value of nerve characteristics in CRC and to verify the impact of nerves on tumor growth.

View Article and Find Full Text PDF

Background: Chronic neuropathic pain generally has a poor response to treatment with conventional drugs. Sympathectomy can alleviate neuropathic pain in some patients, suggesting that abnormal sympathetic-somatosensory signaling interactions might underlie some forms of neuropathic pain. The molecular mechanisms underlying sympathetic-somatosensory interactions in neuropathic pain remain obscure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!