Impact of Endocrine Disruptors upon Non-Genetic Inheritance.

Int J Mol Sci

CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France.

Published: March 2022

Similar to environmental factors, EDCs (endocrine-disrupting chemicals) can influence gene expression without modifying the DNA sequence. It is commonly accepted that the transgenerational inheritance of parentally acquired traits is conveyed by epigenetic alterations also known as "epimutations". DNA methylation, acetylation, histone modification, RNA-mediated effects and extracellular vesicle effects are the mechanisms that have been described so far to be responsible for these epimutations. They may lead to the transgenerational inheritance of diverse phenotypes in the progeny when they occur in the germ cells of an affected individual. While EDC-induced health effects have dramatically increased over the past decade, limited effects on sperm epigenetics have been described. However, there has been a gain of interest in this issue in recent years. The gametes (sperm and oocyte) represent targets for EDCs and thus a route for environmentally induced changes over several generations. This review aims at providing an overview of the epigenetic mechanisms that might be implicated in this transgenerational inheritance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950994PMC
http://dx.doi.org/10.3390/ijms23063350DOI Listing

Publication Analysis

Top Keywords

transgenerational inheritance
12
impact endocrine
4
endocrine disruptors
4
disruptors non-genetic
4
inheritance
4
non-genetic inheritance
4
inheritance environmental
4
environmental factors
4
factors edcs
4
edcs endocrine-disrupting
4

Similar Publications

Male reproductive health is governed by an intricate interplay of genetic, epigenetic, and environmental factors. Epigenetic mechanisms-encompassing DNA methylation, histone modifications, and non-coding RNA activity-are crucial both for spermatogenesis and sperm maturation. However, oxidative stress, driven by excessive reactive oxygen species, disrupts these processes, leading to impaired sperm function and male infertility.

View Article and Find Full Text PDF

Improving the odds of survival: transgenerational effects of infections.

EMBO Mol Med

January 2025

Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Centre, 6500HB, Nijmegen, the Netherlands.

Recent studies argue for a novel concept of the role of chromatin as a carrier of epigenetic memory through cellular and organismal generations, defining and coordinating gene activity states and physiological functions. Environmental insults, such as exposures to unhealthy diets, smoking, toxic compounds, and infections, can epigenetically reprogram germ-line cells and influence offspring phenotypes. This review focuses on intergenerational and transgenerational epigenetic inheritance in different plants, animal species and humans, presenting the up-to-date evidence and arguments for such effects in light of Darwinian and Lamarckian evolutionary theories.

View Article and Find Full Text PDF

Transgenerational Plasticity of Maternal Hemolymph Trehalose in Aphids.

Arch Insect Biochem Physiol

January 2025

College of Agriculture, Ibaraki University, Inashiki, Japan.

Aphids exhibit a unique reproductive strategy known as pseudoplacental viviparity, in which embryos develop internally and are thought to receive nutrients such as sugars and amino acids directly from the maternal hemolymph through an ovariole sheath, bypassing the need for traditional yolk storage. This system enables viviparous aphids to adapt to diverse and potentially stressful environments by transmitting maternal environmental cues that influence transgenerational plasticity. However, the mechanisms underlying this nutrient-mediated plasticity are poorly understood.

View Article and Find Full Text PDF

Caenorhabditis Elegans as a Model for Environmental Epigenetics.

Curr Environ Health Rep

January 2025

Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA.

Purpose Of Review: The burgeoning field of environmental epigenetics has revealed the malleability of the epigenome and uncovered numerous instances of its sensitivity to environmental influences; however, pinpointing specific mechanisms that tie together environmental triggers, epigenetic pathways, and organismal responses has proven difficult. This article describes how Caenorhabditis elegans can fill this gap, serving as a useful model for the discovery of molecular epigenetic mechanisms that are conserved in humans.

Recent Findings: Recent results show that environmental stressors such as methylmercury, arsenite, starvation, heat, bacterial infection, and mitochondrial inhibitors can all have profound effects on the epigenome, with some insults showing epigenetic and organismal effects for multiple generations.

View Article and Find Full Text PDF

Slavery, legal segregation, and ongoing discrimination have exacted an unfathomable toll on the black population in the United States, particularly with respect to the impact on health outcomes. In recent years, various researchers and activists have suggested that racial disparities in the modern era can be attributed directly to the trauma of slavery, postulating that these unspeakable traumas led to epigenetic changes in slaves-changes that have since been passed down to subsequent generations. Investigating those claims in this paper, we comprise a review of previous literature that considers the potential for transgenerational epigenetic transmission of trauma in humans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!