The Notch signaling pathway is highly conserved during evolution. It has been well documented that Notch signaling regulates cell proliferation, migration, and death in the nervous, cardiac, and endocrine systems. The Notch pathway is relatively simple, but its activity is regulated by numerous complex mechanisms. Ligands bind to Notch receptors, inducing their activation and cleavage. Various post-translational processes regulate Notch signaling by affecting the synthesis, secretion, activation, and degradation of Notch pathway-related proteins. Through such post-translational regulatory processes, Notch signaling has versatile effects in many tissues, including the hypothalamus. Recently, several studies have reported that mutations in genes related to the Notch signaling pathway were found in patients with central precocious puberty (CPP). CPP is characterized by the early activation of the hypothalamus-pituitary-gonadal (HPG) axis. Although genetic factors play an important role in CPP development, few associated genetic variants have been identified. Aberrant Notch signaling may be associated with abnormal pubertal development. In this review, we discuss the current knowledge about the role of the Notch signaling pathway in puberty and consider the potential mechanisms underlying CPP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950842PMC
http://dx.doi.org/10.3390/ijms23063332DOI Listing

Publication Analysis

Top Keywords

notch signaling
32
signaling pathway
16
notch
10
aberrant notch
8
signaling
8
central precocious
8
precocious puberty
8
pathway
5
pathway potential
4
potential mechanism
4

Similar Publications

Arthroscopy is a minimally invasive surgical procedure used to diagnose and treat joint problems. The clinical workflow of arthroscopy typically involves inserting an arthroscope into the joint through a small incision, during which surgeons navigate and operate largely by relying on their visual assessment through the arthroscope. However, the arthroscope's restricted field of view and lack of depth perception pose challenges in navigating complex articular structures and achieving surgical precision during procedures.

View Article and Find Full Text PDF

Aim: Effective control of mesenchymal stem cell (MSC) differentiation towards osteogenic lineages is fundamental for bone regeneration. This study elucidates the regulatory role of methyltransferase like 7A (METTL7A) in the osteogenic differentiation of MSCs.

Methodology: Alkaline phosphatase staining, Alizarin Red S staining, western blotting, and in vivo studies were conducted to determine the effects of METTL7A depletion or overexpression on the osteogenic differentiation of various types of MSCs.

View Article and Find Full Text PDF

Chronic exposure to hexavalent chromium induces esophageal tumorigenesis via activating the Notch signaling pathway.

J Zhejiang Univ Sci B

October 2024

Department of Thoracic Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.

Hexavalent chromium Cr(VI), as a well-established carcinogen, contributes to tumorigenesis for many human cancers, especially respiratory and digestive tumors. However, the potential function and relevant mechanism of Cr(VI) on the initiation of esophageal carcinogenesis are largely unknown. Here, immortalized human esophageal epithelial cells (HEECs) were induced to be malignantly transformed cells, termed HEEC-Cr(VI) cells, via chronic exposure to Cr(VI), which simulates the progress of esophageal tumorigenesis.

View Article and Find Full Text PDF

Objectives: In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.

Aims: This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.

View Article and Find Full Text PDF

Acquired immunodeficiency syndrome is a systemic infectious disease caused by human immunodeficiency virus infection, which could attack the bones and heart. However, the relationship between Nuclear Complex Associated 3 Homolog (NOC3L) and DEAD box helicase 17 (DDX17) and acquired immunodeficiency complicated with viral myocarditis and osteoporosis is unclear. The acquired immune deficiency dataset GSE140713, GSE147162 and the osteoporosis dataset (GSE230665), and viral myocarditis dataset (GSE150392) configuration files were generated from gene expression omnibus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!