In this work, sulfonated polyetheretherketone (S-PEEK)-based coatings, nanocrystalline ZnS and hydroxyapatite (n-HA) particles were developed on Zr-2.5Nb zirconium alloy substrates by electrophoretic deposition (EPD) combined with subsequent heat treatment. The properties of suspensions and deposition kinetics were studied. Cationic chitosan polyelectrolyte ensured the stabilization of the suspension and allowed for the co-deposition of all coating components on the cathode. The heating of the coated samples at a temperature of 450 °C and slow cooling resulted in sulfonation of the PEEK and the formation of dense coatings. The coatings were characterized by high roughness, hardness, modulus of elasticity and adhesion strength. The coatings revealed mild hydrophilicity, improved the electrochemical corrosion resistance of the alloy and induced the formation of hydroxyapatite with a cauliflower-like morphology on its surface during the Kokubo test. This work explored the great development potential of advanced sulfonated PEEK-based coatings, incorporating antibacterial and bioactive components by EPD combined with heat treatment to stimulate the surface properties of zirconium alloy for prospective dental and orthopedic applications. The antibacterial and osteoconductive properties of the obtained coatings should be further investigated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8953702PMC
http://dx.doi.org/10.3390/ijms23063244DOI Listing

Publication Analysis

Top Keywords

zirconium alloy
12
epd combined
8
heat treatment
8
coatings
7
microstructure selected
4
properties
4
selected properties
4
properties advanced
4
advanced biomedical
4
biomedical n-ha/zns/sulfonated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!