Effect of the Plasma Gas Type on the Surface Characteristics of 3Y-TZP Ceramic.

Int J Mol Sci

Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon 16499, Korea.

Published: March 2022

Plasma surface treatment can be an attractive strategy for modifying the chemically inert nature of zirconia to improve its clinical performance. This study aimed to clarify the effect of plasma gas compositions on the physicochemical surface modifications of 3 mol% yttria-stabilized zirconia (3Y-TZP). The cold, atmospheric plasma discharges were carried out by using four different plasma gases, which are He/O, N/Ar, N, and Ar from an application distance of 10 mm for 60 s. Static contact angles were measured to define the surface free energy. Changes in elemental composition, surface crystallinity, and surface topography were assessed with X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM), respectively. A significant decrease in water contact angle was observed in all plasma groups with the lowest value of 69° in the N/Ar group. CLSM and SEM investigations exhibited no morphological changes in all plasma groups. XPS revealed that a reduction in the surface C content along with an increase in O content was pronounced in the case of N/Ar compared to others, which was responsible for high hydrophilicity of the surface. XRD showed that the changes in crystallite size and microstrain due to oxygen atom displacements were observed in the N/Ar group. The N/Ar plasma treatment may contribute to enhancing the bioactivity as well as the bonding performance of 3Y-TZP by controlling the plasma-generated nitrogen functionalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950882PMC
http://dx.doi.org/10.3390/ijms23063007DOI Listing

Publication Analysis

Top Keywords

plasma
8
plasma gas
8
surface
8
plasma groups
8
n/ar group
8
n/ar
5
gas type
4
type surface
4
surface characteristics
4
characteristics 3y-tzp
4

Similar Publications

Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.

View Article and Find Full Text PDF

Background: The authors aimed to explore the association of fatty acids with periodontitis and its severity and to assess causality using Mendelian randomization (MR) analyses.

Methods: Data for participants with complete data were extracted from the 2009-2014 National Health and Nutrition Examination Survey. Weighted logistic regression was used to explore the relationship between dietary fatty acids and periodontitis and its severity.

View Article and Find Full Text PDF

Introduction: Convalescent plasma (CP) therapy is a form of passive immunization which has been used as a treatment for coronavirus disease 2019 (COVID-19). This study aims to evaluate the efficacy and safety of CP therapy in patients with severe COVID-19.

Methodology: In this retrospective cohort study, 50 patients with severe COVID-19 treated with CP at Shahid Beheshti Hospital, Kashan, in 2019 were evaluated.

View Article and Find Full Text PDF

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!