The glymphatic system is a glial-dependent waste clearance pathway in the central nervous system, devoted to drain away waste metabolic products and soluble proteins such as amyloid-beta. An impaired brain glymphatic system can increase the incidence of neurovascular, neuroinflammatory, and neurodegenerative diseases. Photobiomodulation (PBM) therapy can serve as a non-invasive neuroprotective strategy for maintaining and optimizing effective brain waste clearance. In this review, we discuss the crucial role of the glymphatic drainage system in removing toxins and waste metabolites from the brain. We review recent animal research on the neurotherapeutic benefits of PBM therapy on glymphatic drainage and clearance. We also highlight cellular mechanisms of PBM on the cerebral glymphatic system. Animal research has shed light on the beneficial effects of PBM on the cerebral drainage system through the clearance of amyloid-beta via meningeal lymphatic vessels. Finally, PBM-mediated increase in the blood-brain barrier permeability with a subsequent rise in Aβ clearance from PBM-induced relaxation of lymphatic vessels via a vasodilation process will be discussed. We conclude that PBM promotion of cranial and extracranial lymphatic system function might be a promising strategy for the treatment of brain diseases associated with cerebrospinal fluid outflow abnormality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8950470PMC
http://dx.doi.org/10.3390/ijms23062975DOI Listing

Publication Analysis

Top Keywords

glymphatic system
16
drainage system
12
system
9
therapy glymphatic
8
waste clearance
8
pbm therapy
8
glymphatic drainage
8
pbm cerebral
8
lymphatic vessels
8
glymphatic
6

Similar Publications

New perspectives on the glymphatic system and the relationship between glymphatic system and neurodegenerative diseases.

Neurobiol Dis

January 2025

Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou 215123, China. Electronic address:

Neurodegenerative diseases (ND) are characterized by the accumulation of aggregated proteins. The glymphatic system, through its rapid exchange mechanisms between cerebrospinal fluid (CSF) and interstitial fluid (ISF), facilitates the movement of metabolic substances within the brain, serving functions akin to those of the peripheral lymphatic system. This emerging waste clearance mechanism offers a novel perspective on the removal of pathological substances in ND.

View Article and Find Full Text PDF

Cerebral amyloid angiopathy: one single entity?

Curr Opin Neurol

February 2025

Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.

Purpose Of Review: Cerebral amyloid angiopathy (CAA) is a common brain disorder among the elderly and individuals with Alzheimer's disease, where accumulation of amyloid-ß can lead to intracerebral hemorrhage and dementia. This review discusses recent developments in understanding the pathophysiology and phenotypes of CAA.

Recent Findings: CAA has a long preclinical phase starting decades before symptoms emerge.

View Article and Find Full Text PDF

Background: In the inflammatory process of multiple sclerosis (MS) several toxic waste products are generated. The clearance of these products might depend on the glymphatic system; however, it's preserved function in MS is uncertain. Recently, it was suggested that this 'waste clearance' system can be examined by measuring the diffusion along the perivascular space (ALPS) index.

View Article and Find Full Text PDF

Quantitative evaluation of dynamic glymphatic activity in insomnia: A contrast-enhanced synthetic MRI study.

Sleep Med

January 2025

Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University Nanchang, 330006, China; Intelligent Medical Imaging of Jiangxi Key Laboratory, 330006, Nanchang, China; School of Biomedical Engineering, National Graduate College for Engineers, Tsinghua University, 100084, Beijing, China. Electronic address:

Article Synopsis
  • The study investigates the connection between insomnia disorder (ID) and glymphatic circulation, utilizing dynamic synthetic magnetic resonance imaging (syMRI) on 32 insomnia patients and 10 healthy volunteers.
  • Results showed significant differences in T1 signal values in several brain areas, including the insula gray matter and hippocampal gray matter, between insomnia patients and the control group at various time points.
  • Statistical analyses indicated that time-varying T1 values in cerebral gray matter and the putamen also differed significantly between groups, suggesting potential glymphatic system involvement in insomnia.
View Article and Find Full Text PDF

Purpose: Glymphatic function has not been explored in patients with focal cortical dysplasia (FCD)-related epilepsy. This study aimed to investigate the glymphatic system's involvement in these patients and to evaluate its correlation with response patterns to different antiseizure medications (ASMs) using diffusion tensor imaging along the perivascular space (DTI-ALPS).

Methods: Fifty-two patients with FCD-related epilepsy (10 with drug-responsive epilepsy and 42 with drug-resistant epilepsy) and 24 healthy controls (HC) were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!