Timely discovery of COVID-19 could aid in formulating a suitable treatment plan for disease mitigation and containment decisions. The widely used COVID-19 test necessitates a regular method and has a low sensitivity value. Computed tomography and chest X-ray are also other methods utilized by numerous studies for detecting COVID-19. In this article, we propose a CNN called depthwise separable convolution network with wavelet multiresolution analysis module (WMR-DepthwiseNet) that is robust to automatically learn details from both spatialwise and channelwise for COVID-19 identification with a limited radiograph dataset, which is critical due to the rapid growth of COVID-19. This model utilizes an effective strategy to prevent loss of spatial details, which is a prevalent issue in traditional convolutional neural network, and second, the depthwise separable connectivity framework ensures reusability of feature maps by directly connecting previous layer to all subsequent layers for extracting feature representations from few datasets. We evaluate the proposed model by utilizing a public domain dataset of COVID-19 confirmed case and other pneumonia illness. The proposed method achieves 98.63% accuracy, 98.46% sensitivity, 97.99% specificity, and 98.69% precision on chest X-ray dataset, whereas using the computed tomography dataset, the model achieves 96.83% accuracy, 97.78% sensitivity, 96.22% specificity, and 97.02% precision. According to the results of our experiments, our model achieves up-to-date accuracy with only a few training cases available, which is useful for COVID-19 screening. This latest paradigm is expected to contribute significantly in the battle against COVID-19 and other life-threatening diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947526PMC
http://dx.doi.org/10.3390/diagnostics12030765DOI Listing

Publication Analysis

Top Keywords

depthwise separable
12
covid-19
9
convolutional neural
8
neural network
8
computed tomography
8
chest x-ray
8
model achieves
8
wmr-depthwisenet wavelet
4
wavelet multi-resolution
4
multi-resolution depthwise
4

Similar Publications

In agriculture, promptly and accurately identifying leaf diseases is crucial for sustainable crop production. To address this requirement, this research introduces a hybrid deep learning model that combines the visual geometric group version 19 (VGG19) architecture features with the transformer encoder blocks. This fusion enables the accurate and précised real-time classification of leaf diseases affecting grape, bell pepper, and tomato plants.

View Article and Find Full Text PDF

Multiple token rearrangement Transformer network with explicit superpixel constraint for segmentation of echocardiography.

Med Image Anal

January 2025

General Hospital of the Southern Theatre Command, PLA, Guangzhou, China; The First School of Clinical Medicine, Southern Medical University, Guangzhou, China. Electronic address:

Diagnostic cardiologists have considerable clinical demand for precise segmentation of echocardiography to diagnose cardiovascular disease. The paradox is that manual segmentation of echocardiography is a time-consuming and operator-dependent task. Computer-aided segmentation can reduce the workflow greatly.

View Article and Find Full Text PDF

Introduction: With the advent of technologies such as deep learning in agriculture, a novel approach to classifying wheat seed varieties has emerged. However, some existing deep learning models encounter challenges, including long processing times, high computational demands, and low classification accuracy when analyzing wheat seed images, which can hinder their ability to meet real-time requirements.

Methods: To address these challenges, we propose a lightweight wheat seed classification model called LWheatNet.

View Article and Find Full Text PDF

Beet crops are highly vulnerable to pest infestations throughout their growth cycle, which significantly affects crop development and yield. Timely and accurate pest identification is crucial for implementing effective control measures. Current pest detection tasks face two primary challenges: first, pests frequently blend into their environment due to similar colors, making it difficult to capture distinguishing features in the field; second, pest images exhibit scale variations under different viewing angles, lighting conditions, and distances, which complicates the detection process.

View Article and Find Full Text PDF

For surveillance video management in university laboratories, issues such as occlusion and low-resolution face capture often arise. Traditional face recognition algorithms are typically static and rely heavily on clear images, resulting in inaccurate recognition for low-resolution, small-sized faces. To address the challenges of occlusion and low-resolution person identification, this paper proposes a new face recognition framework by reconstructing Retinaface-Resnet and combining it with Quality-Adaptive Margin (adaface).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!