Polymer plasma produced by laser ablation is investigated in a theoretical manner. In relation to the fact that the charge carrier circulation is assumed to take place on fractal curves, the so-called fractality type, electrical charge transport can be resolved by an extended scale relativity method. In addition, an elegant mathematical model, utilizing a conjecture of fractal space-time, is elaborated. The complete solution and its graphical representation for temperature distribution in two-dimensional and three-dimensional cases are successfully introduced. The discrete physical behavior and irrevocable transformation of nanoscale microdomain substructures by laser ablation are realistically examined. Further, benefiting from the interpretation of the fractal analysis, each of the experimental results can be fairly explained. On top of that, this paper presents a proof of Tsallis nonextensive q-statistics, especially for the plasma plume studied. Tsallis entropy in direct connection with fractal dynamics and chaotic-type mechanics of the plasma plume and time-series representation of plasma temperature is introduced for the first time in the present publication, and the q-statistics of the plume plasma temperature are also studied, among others.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947483PMC
http://dx.doi.org/10.3390/e24030342DOI Listing

Publication Analysis

Top Keywords

laser ablation
12
plasma plume
12
polymer plasma
8
tsallis entropy
8
plasma temperature
8
plasma
7
fractal
5
fractal modeling
4
modeling polymer
4
plasma laser
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!