Phase-Amplitude Relations for a Particle with a Superposition of Two Energy Levels in a Double Potential Well.

Entropy (Basel)

Israel Heritage Department, Ariel University, Kiriat Hamata P.O. Box 3, Ariel 40700, Israel.

Published: February 2022

We study the connection between the phase and the amplitude of the wave function and the conditions under which this relationship exists. For this we use the model of particle in a box. We have shown that the amplitude can be calculated from the phase and vice versa if the log analytical uncertainty relations are satisfied.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8947520PMC
http://dx.doi.org/10.3390/e24030312DOI Listing

Publication Analysis

Top Keywords

phase-amplitude relations
4
relations particle
4
particle superposition
4
superposition energy
4
energy levels
4
levels double
4
double potential
4
potential well
4
well study
4
study connection
4

Similar Publications

Unlabelled: Stress is ubiquitous in daily life. Subcortical and cortical regions closely interact to respond to stress. Delta-beta cross-frequency coupling (CFC), believed to signify communication between different brain areas, can serve as a neural signature underlying the heterogeneity in stress responses.

View Article and Find Full Text PDF

Theta-Gamma Decoupling - A neurophysiological marker of impaired reward processing in Parkinson's disease.

Brain Res

December 2024

Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, India. Electronic address:

Individuals with Parkinson's disease (PD) exhibit altered reward processing, reflected by a decreased amplitude of an event-related potential (ERP) marker called reward positivity (RewP). Most studies have used RewP to investigate reward behavior due to the high temporal resolution of EEG and its high sensitivity. However, traditional single-electrode ERP analyses often overlook the intricate dynamics of non-phase-locked oscillatory activity and the complex interactions within these neural oscillatory patterns.

View Article and Find Full Text PDF

Dissociation-related behaviors in mice emerge from the inhibition of retrosplenial cortex parvalbumin interneurons.

Cell Rep

December 2024

Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, China. Electronic address:

Dissociation, characterized by altered consciousness and perception, underlies multiple mental disorders, but the specific neuronal subtypes involved remain elusive. In mice, we find that dissociation-inducing doses of ketamine significantly inhibit retrosplenial cortex (RSC) parvalbumin interneurons (PV-INs), enhancing delta oscillations (1-3 Hz) and delta-gamma phase-amplitude coupling (δ-γ PAC) and inducing dissociation-like behaviors. Optogenetic inhibition of RSC PV-INs triggers delta oscillations, δ-γ PAC, and some dissociation-like behaviors without ketamine.

View Article and Find Full Text PDF

Cognitive reappraisal, an effective emotion regulation strategy, is influenced by various individual factors. Although previous studies have established a link between negative emotion differentiation (NED) and cognitive reappraisal, the underlying neural mechanisms remain largely unknown. Using electroencephalography, this study investigates the influence and neural basis of NED in cognitive reappraisal by integrating aspects of event-related potentials, neural oscillation rhythms, and cross-frequency coupling.

View Article and Find Full Text PDF

Cortical signals have been shown to track acoustic and linguistic properties of continuous speech. This phenomenon has been measured in both children and adults, reflecting speech understanding by adults as well as cognitive functions such as attention and prediction. Furthermore, atypical low-frequency cortical tracking of speech is found in children with phonological difficulties (developmental dyslexia).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!